论文部分内容阅读
传统MCrAlY粘接层最高服役温度仅为1050℃,且易于形成尖晶石相加速涂层退化,即使经历改善但是运用于长期高温服役环境效果已经有限。国外航空发动机企业例如GE和罗罗公司均把Pt改性的铝化物涂层(主要是(Ni,Pt)Al)作为商用航空发动机的高温防护粘接层,再于其上采用EB-PVD法制备YSZ陶瓷层,该方法广泛运用于目前民航发动机的粘接层上,可靠稳定性好,且有多年的服役经验。由于(Ni,Pt)Al粘接层于高温服役环境下能形成连续、致密具有良好保护性作用的α-Al2O3氧化膜,而能显著提高高温服役寿命。目前来说,大量研究中均发现金属中S杂质存在会导致高温服役环境下,S元素向金属/氧化膜界面处富集,最终导致氧化膜的剥落。P.Y. Hou等研究了S元素在Al2O3/NiAl界面处的富集行为,证实了S杂质的存在弱化了界面结合同时提高了孔洞在氧化膜内部的形成率。同时也报道了将S杂质含量降低至1ppm以下后会明显提高Al2O3氧化膜粘附性,而且其效果不亚于活性元素改性的作用。因此可见,S元素在涂层的高温氧化过程中扮演着极为关键的作用,降低他的存在能明显提高抗高温氧化能力和涂层自我防护能力,同时决定了抗氧化性甚至是涂层的服役寿命。对于Pt改性的铝化物涂层,Pt元素的存在被认为是最能减轻S元素的有害作用的。然而Pt含量必须足够的高才能抵消涂层中固溶态S导致内部孔洞形成而使得Al2O3氧化膜发生剥落。本课题组前期研究了不同的电镀Pt层厚度对于(Ni,Pt)Al涂层高温氧化行为的影响。但是该研究采用的酸性电镀Pt方式可能会引入杂质S含量不同对于高温退化和氧化行为的影响也应予以考虑。Y. Zhang等基于酸性电镀Pt法制备铂铝涂层和对比未经镀铂涂层的高温氧化行为研究发现电镀Pt制备的铂铝涂层氧化膜脊状处出现大量裂纹,同时证明该处应该为S元素杂质的引入所导致。铂铝涂层中S杂质的引入主要来源于两个可能的方面:(1)高温合金基体中的杂质元素S;(2)涂层制备所引入的S。本研究中,通过酸性电镀和碱性电镀法制备(Ni,Pt)Al涂层高温环境下研究S元素对氧化行为的影响。研究揭示了杂质S元素对界面孔洞的形成机理和Al2O3氧化膜粘附性的作用。同时杂质S元素对氧化速率和氧化膜起伏进行了详细的讨论。