基于低秩背景约束与多线索传播的图像显著性检测

来源 :电子与信息学报 | 被引量 : 0次 | 上传用户:yilongzhanyuye1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对当前基于流形排序的显著性检测算法缺乏子空间信息的挖掘和节点间传播不准确的问题,该文提出一种基于低秩背景约束与多线索传播的图像显著性检测算法。融合颜色、位置和边界连通度等初级视觉先验形成背景高级先验,约束图像特征矩阵的分解,强化低秩矩阵与稀疏矩阵的差异,充分描述子空间结构信息,从而有效地将前景与背景分离;引入稀疏感知和局部平滑等线索改进传播矩阵的构建,增强颜色特征出现概率低的节点的传播能力,加强局部区域内节点的关联性,准确凸显节点的属性,得到紧密且连续的显著区域。在3个基准数据集上的实验结果与图像
其他文献
为了提高肺结节恶性度分级的计算精度及可解释性,该文提出一种基于CT征象量化分析的肺结节恶性度分级方法。首先,融合影像组学特征和通过卷积神经网络提取的高阶特征构造分析CT征象所需的特征集;接着,在混合特征集的基础上利用进化搜索机制优化集成学习分类器,实现对7种肺结节征象的识别和量化打分;最后,将7种CT征象的量化打分输入到一个利用差分进化算法优化产生的多分类器,实现肺结节恶性度的分级计算。在实验研究