论文部分内容阅读
垃圾邮件过滤就是在线对邮件做出Spam(垃圾)或Ham(非垃圾)的判断,这是一种根据客户反馈不断自学习的过程。本文通过抽取邮件的语言特征和行为特征构建多个简单过滤器,然后采用集成学习方法组合这些简单过滤器,获得了比简单过滤器更高的性能。实验表明单一特征学习的计算复杂性低、速度较快,而集成学习的效果更好。本文提出的将SVM集成学习用于邮件过滤的方法,在各种集成学习方法中效果最好。