论文部分内容阅读
非线性泛函分析作为现代数学的一个重要分支,因其能很好的解释自然界中各种各样的自然现象受到了越来越多的数学工作者的广泛关注,并在物理学,应用数学,航天,生物等领域有着广泛而重要的应用. 本文共分为三章,第一章我们研究了脉冲三点边值问题[公式(1.1.1),略]。 本章结合了[1]的脉冲项和[2]的边值条件来研究方程(1.1.1).相较于文献[1][2],我们将有限个脉冲点推广至无穷个脉冲点,且代替其锥拉伸压缩和不动点指数的方法,运用Lerray-Schauder二则一定理和不动点指数的方法得到解的存在性;将[3]的一般微分方程加上脉冲项来研究带有脉冲项的微分方程.另外,考虑文献[4][5]的方程都是研究正解的存在性,而本章方程不仅得到正解的存在性,还得到变号解的存在性. 第二章我们研究了半无穷区间上脉冲分数阶微分方程多点边值问题[公式(2.1.1),略]。 本章在文[6]的基础上,将其有限区间换成无限区间并研究了无穷个脉冲点的情况;将文[7]的方程增加了关于u(si)的条件,其中0=s0<t1≤s1≤t2<…<ti≤…;将[8]的方程从整数阶推广至分数阶且增加了关于 u(si)的条件.另外[9][10][11][12]考虑有限区间脉冲分数阶微分方程边值问题,而本章考虑无穷区间脉冲分数阶微分方程边值问题,利用Banach压缩映射得到方程唯一解。 第三章我们研究了分数阶微分方程的非局部边值问题[公式(3.1.1),略]。 本章在文[13]的基础上,将α-1阶导数提高一阶;相较于文献[14],方程(3.1.1)把α-1阶导数提高一阶且利用Banach压缩映射得到方程唯一解;相较于文献[15],将局部边值条件推广为非局部边值条件,即u(ξ)=a∫η0(η-s)β-1Γ(β)u(s)ds积分边值条件更加广泛,而且把Riemann-Liouville型导数改为研究Caputo型导数.