论文部分内容阅读
烟气和废气中的主要大气污染物是SO2、NOx等物质,它们是造成酸雨的主要原因,也是导致雾霾现象的污染物之一,给人类的生存环境造成严重的危害。大气污染物主要来源于燃煤发电、冶炼、化工、石化和水泥等行业的烟气或废气排放。水泥生产厂是重要的大气污染源之一,其主要的大气污染物包括粉尘、SO2与NOx等。国内外针对水泥厂废气中SO2、NOx减排技术已做了不少研究,研发出了一系列成熟的废气净化技术,其中一部分技术已实现了工业化应用,并取得了较好的SO2、NOx净化效果。但是,我国脱硫技术与脱硝技术发展不均衡,导致了水泥厂废气处理技术仍存在诸多问题。如废气中污染物净化不完全,净化后的SO2、NOx排放浓度仍然较高。处理工艺往往采用SO2、NOx分步去除的处理方式,这种“一对一”式的传统处理模式,即一套系统仅处理一种污染物,存在着各系统间匹配性差、设备占地面积大、系统建造和运营费用高及能耗高等诸多问题。随着国家对环保要求的不断提高和规定的减排污染物种类的陆续增加,企业所担负的环保费用也越来越高。因此,开发一种新型、高效、经济、集成的水泥厂废气一体化洁净技术已成为烟(尾)气净化技术研究趋势。工业废气净化技术从分步式处理向一体化处理技术之升级转型,脱硫脱硝同时进行技术是一体化处理技术的基础。钠基吸收剂兼具优越的脱硫和脱硝性能,已被应用于烟气、废气同时脱硫脱硝过程中。因此,在对湿法脱硫工艺、脱硝催化过程和超声波技术综述的基础上,本论文首先开展了新型钠基同时脱硫脱硝吸收剂的研发工作。针对水泥窑废气组成特点,以NaClO2与NaOH为主要成分开发出了可再生新型碱液吸收剂,并与超声波技术相结合,研发了一种水泥窑尾气同时脱硫脱硝一体化的新工艺——新型碱液-超声波雾化式废气脱硫脱硝技术。论文详细地研究了新型碱液吸收剂的脱硫脱硝效率和吸收剂再生性能的主要影响因素。实验发现,在脱硫脱硝反应中,吸收剂的pH值、NaC102浓度、反应温度和超声波雾化作用对脱除率有较为显著的影响。在吸收剂再生试验中,再生溶液pH值、再生温度、石灰乳浓度和通氧量对吸收剂的再生性能影响较大。研究获得新型碱液吸收剂脱硫脱硝的最佳工艺参数如下:溶液pH值为10,NaC102浓度为0.02mol/L,NaOH浓度为0.1mmol/L,反应温度为55℃,含氧量为8%,该条件下脱硫率为99.95%,脱硝率为69.38%;与超声波雾化反应装置相配套,还可以将新型碱液吸收剂的脱硝率从鼓泡反应器中的58.29%提高到68.89%。吸收剂再生最佳工艺参数为:溶液pH值为6,温度为35℃,钙硫比为0.9,曝气时间为90min,在此条件下硫酸钙生成比例达到69%。通过对再生产物进行TEM分析,结果表明再生物中主要成分为硫酸钙及少量的亚硫酸钙。对新型碱液吸收剂再生机理进行了探讨,其反应过程如下:2NaHSO3+Ca(OH)2→Na2SO3+CaSO3+H2O Na2SO3+Ca(OH)2→2NaOH+ CaSO3 Na2SO4+Ca(OH)2→2NaOH+CaSO4通过对脱硫脱硝反应过程分析表征,论文也对新型碱液吸收剂脱除SO2和NO的反应机理进行了初步探讨,结果如下:(1)脱硫反应机理:①S02液相吸收SO2(g)(?)SO2(aq)SO2+2OH-(?)SO32-+H2O SO2(过量)+OH-(?)HSO3-②SO2液相氧化吸收2SO32-+C1O2-→2SO42-+Cl-2HSO3-+C1O2-+2OH-→2SO42-+Cl-+2H20脱硫总反应为:2SO2+ClO2-+4OH-=2SO42-+Cl-+2H2O(2)脱硝反应机理为:NO(g)(?)NO(aq)2NO+ClO2-→2NO2+Cl-NO+NO2+ 20H-→2NO2-+ H2O 2NO2+20H--→NO2-+ NO3-+H2O 2NO2-+C1O2-→2NO3-+Cl-脱硝总反应为:4NO+3ClO2-+40H-=4NO3-+3Cl-+2H20论文还对新型碱液吸收剂脱硫脱硝反应进行了热力学和动力学研究。热力学研究结果表明:在等温等压条件下,脱硫、脱硝反应的吉布斯自由能变化为-942.61kJ/mol和-1086.35kJ/mol,均远小于零,因此反应向正向进行。计算得到反应平衡常数非常大,反应可以进行得很完全。两个反应的焓变为-2813.24kJ/mol和-2988.08kJ/mol,均远小于零,反应皆为放热反应,温度升高不利于反应的进行。动力学研究结果表明:脱硫脱硝反应过程中脱硫和脱硝反应的级数均为一级,反应的表观活化能分别为22.392kJ/mol和8.726kJ/mol。正如上文所述,本文还将超声波雾化技术引入废气脱硫脱硝实验中,基于超声波雾化技术的原理,设计了超声波雾化反应装置及一体化净化系统,探究了超声波雾化作用对脱硫脱硝反应物理和化学方面的影响规律。利用CFD分析软件,建立起超声波雾化系统喷枪流场的三维模型。模拟了三种不同工况的初始状态和稳定状态条件下流场速度分布、温度分布和颗粒分布的情况。通过对比三种模拟状态可知,超声波喷嘴速度为17m/s逆风条件下,形成的速度、温度和颗粒分布为最理想。在上述试验和CFD模拟的结果基础上,将新型碱液-超声波雾化式废气脱硫脱硝关键技术进行工业化应用,设计了水泥窑尾气一体化洁净系统,并在广东省某水泥厂的5500t/d新型干法水泥生产线上构建了工程示范,至今已连续运行了两年。省部级科学技术鉴定认为工程示范工艺流程合理、布局紧凑、运行平稳;废气中SO2、NOx脱除效果良好,脱硫率可达96%,脱硝率可达50%;综合运行成本可以接受。工程示范整体达到国内领先水平,对提升非电企业废气净化技术的发展水平有重要意义,该技术具有广阔的推广前景。基于对钠基吸收剂和钙基再生试剂的研究,我们探索性的将型煤中的钙基固硫剂用钠基试剂进行部分替换,以提升型煤固硫剂的固硫效果,因此开展了新型型煤固硫剂的研发,成功地研发了 GCHTDS新型固硫剂,并实现了工业化应用。该新型固硫剂结合特殊的型煤成型技术,有效地解决了二氧化硫在高温区二次释放的难题;在实现SO2的超低排放的同时,还有效地提高了锅炉的热效率。热工测试结果表明:热效率从大同原煤散烧时的59.33%,提高到燃用新型大同型煤时的78.02%。省部级科学技术鉴定认为该技术整体达到了国内领先水平,对降低燃煤烟气SO2排放造成的大气污染有重要的现实意义。