论文部分内容阅读
合成孔径雷达与逆合成孔径雷达(SAR/ISAR)具有全天时、全天候观测的特点,通过相应的后续数字处理技术能够有效地获取观测场景与监测目标的地形特点与结构尺寸等丰富的散射特征信息,广泛应用于地形勘测、战场监视、自然灾害预报、空间态势感知与防空反导等国防工业与民用领域。在SAR/ISAR成像中,距离-方位二维高分辨像是获取观测场景与目标精细特征的关键。系统发射信号的带宽决定了距离分辨率,而方位分辨率则由方位向合成孔径长度决定。在现有的传统SAR体制下,二维分辨率往往会受到雷达体制的制约而难以提升。通过与现代无人机、直升机等小型化平台的结合,可以利用旋转扫描/聚束等方式更加灵活地选择观测场景,通过多角度观测消除遮挡效应改善SAR图像分辨率,但为满足该观测条件,SAR平台往往具有复杂的运动轨迹,这也会给后续成像处理带来较大困难,而且低空域小型平台对天气环境因素十分敏感,需要研究高效稳健的运动误差补偿算法,另外,长时间、大转角观测条件下图像中存在的高旁瓣问题也亟待解决。此外,随着大量中低空域飞行器的发展与投入使用,如何对这些具有复杂运动特性的空域目标实现高分辨、实时ISAR成像观测,同样具有重要的研究价值与意义。本文主要针对复杂运动条件下的SAR/ISAR聚焦中存在的关键问题与技术难点,围绕国家973项目“复杂低空飞行的自主避险理论与方法研究”、国家自然科学基金项目“基于空间平台的空间目标检测、成像与识别方法研究”、国家自然科学基金项目“基于空间平台的微弱时敏目标协同检测与识别”等项目的研究任务,对复杂运动条件下的典型SAR成像模式:旋转式合成孔径雷达(ROSAR)、圆轨迹合成孔径雷达(CSAR),以及非均匀旋转平台ISAR的高分辨实时成像与误差补偿方法进行了研究。论文的主要工作概括为以下四个部分:1.针对旋转式合成孔径雷达在高分辨成像时,距离徙动引起的复杂斜距历程与二维波数谱,导致后续成像处理困难的问题,提出了一种改进ROSAR波数域成像算法,实现了宽波束大场景下距离徙动的精确校正与最终成像。此外针对传统二阶斜距近似难以满足ROSAR高分辨成像要求的问题,提出了基于卡尔丹方程的ROSAR成像算法,实现了距离徙动校正与场景精确聚焦成像。2.由于旋转式合成孔径雷达通常安装于无人旋翼直升机等小型平台,更容易受平台振动、气流变化等影响,引入较大的运动误差,造成成像分辨率下降。针对这一问题,提出了一种基于波数域的ROSAR自聚焦成像算法,设计了扩展ROSAR?-k成像算法,在有效校正距离徙动的同时,为后续运动误差补偿提供便利,将二次相位校正与相位梯度估计相结合,并利用划分子孔径的方式消除局部线性分量,最后经过迭代处理后即可有效估计并补偿运动误差,进而获得聚焦良好的ROSAR高分辨图像。3.针对双基圆轨迹合成孔径雷达(BCSAR)系统中,有限信号带宽引起的振铃效应与高旁瓣等问题,提出了一种基于空间分集双基圆轨迹合成孔径雷达(GDBCSAR)的新成像构型,给出了其傅立叶采样面积与图像分辨率的分析,获取了更大的傅立叶采样面积,降低傅立叶采样空间的频谱不连续性,有效降低抑制了成像中的振铃效应与高旁瓣现象。4.在非均匀旋转目标逆合成孔径雷达成像中,目标复杂的运动特性会造成回波中的目标多普勒时变,导致目标ISAR成像质量明显下降。针对现有ISAR成像算法中存在的运算量繁重与传递误差影响严重的问题,提出了一种基于几何信息辅助的非均匀旋转目标运动参数快速估计与ISAR成像方法。通过3-dB滤波与加权最小二乘估计消除噪声与交叉项的干扰,提升二次调频率估计精度。并分别在时间-频率(TFD)域与距离-多普勒域精确估计目标调频率与中心频率,所提算法在有效抑制传递误差与交叉项干扰的同时,能够显著降低运算量,进而实现非均匀旋转目标高分辨ISAR成像实时处理。