【摘 要】
:
标记分布学习是一种新型的解决标记多义性问题的机器学习范式,其在处理标记模糊性问题方面有着十分重要的应用。不同于多标记学习,标记分布学习的标记空间不再是离散的标记向量而是各个标记对于样本的描述程度,它是一种更加泛化的表示形式。近些年来,标记分布学习以其十分广泛的应用背景,得到了越来越多的研究者的重视。在目前的标记分布学习模型中,大部分采用最大熵模型对标记分布学习数据进行预测并没有对标记空间中存在的信
论文部分内容阅读
标记分布学习是一种新型的解决标记多义性问题的机器学习范式,其在处理标记模糊性问题方面有着十分重要的应用。不同于多标记学习,标记分布学习的标记空间不再是离散的标记向量而是各个标记对于样本的描述程度,它是一种更加泛化的表示形式。近些年来,标记分布学习以其十分广泛的应用背景,得到了越来越多的研究者的重视。在目前的标记分布学习模型中,大部分采用最大熵模型对标记分布学习数据进行预测并没有对标记空间中存在的信息进行利用。同时,标记分布学习模型的预测能力还有很大的提升空间。如何更好的利用标记空间存在的信息,设计专门化的标记分布学习模型成为了近几年研究的热点。本文围绕如何更好的利用标记空间中的优势标签信息、标签相关性信息等问题,通过引入集成学习、设置优势标签、度量学习等方式提出了两种专门的标记分布学习设计方案。本文的工作主要如下:(1)本文提出了一种基于集成神经网络的标记分布学习模型,通过引入集成学习、神经网络等技术对标记空间的优势标签信息、标签相关信息进行利用。首先采用优势标签划分基学习器以保证基学习器的多样性,最后利用集合学习器学习动态权值对基学习器的学习结果加权,得到最终的标记分布结果。(2)本文提出了基于几何平均度量学习的标记分布学习模型,利用标记空间的优势标签信息对属性空间进行调整,学习一种新的度量来表示样本在属性空间上的距离。在该度量方式下,具有相同优势标签的样本距离更近,具有不同优势标签的样本距离更远,最后利用k NN算法并结合标签的优势标签信息得到最终的预测结果。
其他文献
数字水印是保护信息安全的一种有效手段,且音频作为经常使用的媒体类型之一,认证音频水印的研究具有极大潜力。目前的认证水印大多为静态信息,缺乏足够的安全性,且结合深度学习方案的音频水印研究也有待挖掘。论文主要研究基于深度学习的身份认证音频水印算法。对于水印信息生成,论文借鉴语音侧写领域关于人声画像的思想,探讨从音频中获取身份特征作为水印信息的可行性,并提出了基于生成对抗网络的身份水印生成模型。该模型利
随着我国经济的快速发展,人们的生活质量显著提高,食品质量安全问题逐渐引起了人们的关注。胶体金免疫层析技术是层析与免疫分析技术相结合的一种技术,能对现场食品开展快速免疫检测,有效地确认食品的质量安全,从而保证人们日常饮食的健康和安全。本文分析了胶体金免疫层析技术及其在食品检测中的应用,以期为食品检测工作提供参考。
近些年来,大规模视频处理在监控分析、交通管理、在线视频内容检索等方面发挥着愈来愈加重要的作用。同时,借助于深度学习的发展,图像分析的精度逐步得到提高,应用深度学习模型例如目标检测模型以及目标识别模型进行视频处理已经变得十分高效。在视频处理过程中,对于同一个视频,会有来自多个不同用户的多个请求。当这些的请求在查询内容或区间等方面存在重叠时,便会为数据共享带来可能性。由此,通过对多个请求间的重叠部分进
目前,知识图谱已经成为人工智能技术的重要组成部分,拥有强大的语义处理能力和数据关联能力。作为知识图谱上最常见的导航式查询,正则路径查询在近些年被广泛研究和讨论,已经成为一个焦点问题。随着互联网的发展,知识图谱规模日益激增,采用分布式技术成为面对大规模数据的必然选择。部分求值技术已经应用于图数据查询的分布式处理方案,然而,基于部分求值的方法一方面会计算很多无效的部分中间结果;另一方面容易导致计算和通
为了更好的完成大规模知识图谱补全和构建等工作,本文主要研究如何高效地利用分布式技术对大规模知识图谱进行稳定有效的表示学习。在利用分布式技术进行知识图谱表示学习时,会面临对大数据和大模型进行稳定高效处理的同时又要减少语义损失的挑战。所以,通过设计高效的分布式并行模式、参数交互模式以及有效的模型聚合方法等方面的工作来解决问题是非常重要的。本文面向知识图谱表示学习提出了一种基于去中心化混合并行的分布式框
语音交互是人类社会最直接、最自然的沟通交流方式,语音识别作为其中关键技术之一,能够通过识别语音信号,将语音信号转化为对应的文本文字。经过多年的深入研究,自动语音识别技术(ASR)已经取得了重大突破,并且投入到实际应用中,但是目前仍有一些技术难题需要攻克,其中最核心的问题就是降噪的处理。在实际应用中,由于周围环境的不确定性,语音常常会受到环境噪音的影响,进而影响语音的质量,最终使得语音识别率显著下降
利用网络表示学习方法高效的分析和挖掘大规模异质信息网络已经引起了广泛关注。由于考虑了节点与边的类型信息,异质信息网络携带的丰富的语义和结构信息,可以很大程度的优化网络分析和下游任务,但是如何充分利用这些信息则成为一个特殊挑战。传统的异质信息网络表示学习通过元路径引导的随机游走产生节点序列,并利用神经语言模型进行表示学习。虽然上述方法可以取得很好的效果,但仍旧是采用非常传统的Skip-Gram神经语
核矩阵近似是提高核方法计算效率的基本方法。已有的核矩阵近似方法独立于学习问题,且用于在线核方法时每回合重新求解近似核矩阵导致较高的计算复杂度。本文首先提出面向泛化误差的矩阵近似方法,然后通过增量奇异值分解给出高效的增量矩阵近似方法。整合泛化误差近似与增量矩阵近似给出在线核方法泛化误差的增量近似方法。主要内容如下:1.提出面向泛化误差的矩阵近似方法。用泛化误差构造采样分布,将该分布作用于核矩阵的近似
水下无线传感器网络在水环境信息采集、海底资源探测、海洋军事监控、水下灾害预警等方面具有广阔的应用前景,其中水下传感器网络节点部署不仅直接影响网络监测质量,而且关系到网络后续的各种算法和协议设计。然而,由于水下环境的特殊性,部署节点的成本高昂,采用何种方法在满足应用环境覆盖要求的前提下有效降低节点的部署成本是需要研究的关键问题。本文首先就现有的部署算法、覆盖指标、感知模型、通信方式等对水下传感器网络
随着人工智能技术的快速发展和迅速普及,神经网络应用在诸多领域上,比如图像分类、图像语义分割、图像检索、物体检测等计算机视觉问题上,并且开始替代大部分传统算法,逐步被部署到终端设备上。但是神经网络计算量非常巨大,从而存在神经网络在硬件上处理速度慢、运行功耗大等问题。其中,CNN(卷积神经网络)庞大的数据移动和计算复杂度给硬件带来了巨大的功耗和性能挑战,这阻碍了CNN在智能手机和智能汽车等嵌入式设备上