论文部分内容阅读
混合工质在低温制冷、天然气液化、气体分离等领域有广泛的应用。与纯工质相比,混合工质核态沸腾的换热性能会大幅降低。因此,探寻混合工质沸腾换热的衰减机制、获得混合工质沸腾换热的特性规律,对换热器的优化设计、混合工质表面换热技术的强化、混合工质制冷循环的设计均有重要的意义。本文从混合工质的成核过程,沸腾时的气核密度,气泡成长过程和沸腾换热系数等方面研究了混合工质沸腾的换热机理和换热特性。首先,本文基于相变时吉布斯自由能的改变分析了非共沸混合工质的非均相成核过程,得到了混合物沸腾时的临界半径,有效能的改变量,起始沸腾过热度和热流密度的解析解。计算结果表明,在相同的过热度下,随着高沸点组分的增加,混合工质的起始沸腾热流密度先增加后减小,且混合物沸腾时的临界半径和最大可用能改变均大于对应的纯工质。因此,在混合工质中形成气泡需要克服更大的能量壁垒。为了验证计算结果,本文对R22、R124及R22/R124混合物的起始沸腾过热度和热流密度进行了实验研究。结果表明,随着R124浓度上升,混合物的起始沸腾过热度和热流密度先增加后减小。且实验与计算结果较好吻合,大部分实验数据的误差为+20%~-40%。混合工质沸腾时气核密度减少是其沸腾换热系数下降的一个主要原因。本研究从气泡形成概率的角度出发,使用涨落理论解释了混合工质沸腾时气核密度衰减的现象。本文首先提出支持浓度涨落假设的证据,然后通过计算低沸点组分在局部区域中变化时系统的熵变,得到了发生浓度涨落的概率和混合工质沸腾时气泡密度的衰减率。另外,本研究还测试了丙烷,异丁烷和丙烷/异丁烷,R134a/R22混合物在透明石英管中沸腾时的气核密度,发现纯工质沸腾时的气核密度随壁面过热度的增加而线性增加,混合工质在相同壁面过热度下沸腾时的气核密度均小于对应的纯工质。而且,实验获得的混合工质沸腾时相对纯工质的气核衰减率与根据浓度涨落理论计算结果较好吻合。气泡成长速度的衰减也是混合工质沸腾换热系数下降的主要另一个主要原因。为了研究混合工质沸腾时传质阻力的影响和气泡成长速度的衰减率,本文建立了相关的实验系统,对单个气泡分别在R134a、R142b、异丁烷和不同浓度R134a/R142b混合物中的成长过程进行了实验研究。通过对比实验衰减因子与根据文献中已有模型计算出的衰减因子,发现已有的模型都低估了传质阻力的影响。在重新考虑传质阻力的影响之后,本研究提出了一个适用于混合工质气泡成长的衰减因子计算模型,误差在+30%~-30%之间。最后,本文对R22,R124和不同浓度R22/R124混合物在压力为0.7~0.85 MPa,热流密度为10000~100000 W/m~2下的池沸腾换热系数进行了实验研究。通过对比已有的纯工质和混合工质传热关联式的计算结果与本文的实验结果,发现其计算结果的准确性均欠佳。因此,本文根据实验结果拟合了新的混合工质池沸腾传热关联式,其平均绝对误差为12.69%,平均相对误差为0.32%。