Birkhoff正交相关问题的研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:nimashabi2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Minkowski空间几何理论是Banach空间几何理论的重要组成部分,其发展对丰富Banach空间几何理论起着不可忽视的作用.众所周知,正交概念是内积空间最重要的概念之一.若将此概念从欧氏几何推广到实赋范空间几何,特别是推广到Minkowski空间(即有限维赋范空间)或Minkowski平面的时候需要放弃内积结构,从而导致内积空间中的正交在一般的实赋范空间中发生了变化.因而,研究赋范空间中广义正交的概念及其性质就显得特别有意义.近二十几年来,赋范空间中的广义正交理论得到快速发展,其中尤以Birkhoff正交为最.本文主要从Minkowski空间角度研究了与Birkhoff正交相关的几类问题,包括对称赋范空间上几何常数D(X)的上界、二维赋范空间满足Birkhoff正交对称的充要条件、高维广义Day-James空间的几何特征以及Bhatia-Semrl定理的等价与推广问题等,主要工作如下:1.基于度量Birkhoff正交与isosceles正交差别的几何常数D(X),针对任意实2n维对称赋范空间X,通过矩阵论方法引进了一个新常数WD(X).事实表明WD(X)是D(X)的一个上界,并且此结论可以推广到任意m维对称赋范线性空间上(m ≥ 2).最后,将所得结果应用到一类经典的逆向Holder不等式中.2.研究了二维Minkowski平面是Day-James空间的充分必要条件,其结果再现了Day构造方法.另外,利用已有文献的方法和绝对正规的定义及性质,讨论了2-维绝对正规赋范空间可以构造Day-James赋范空间,证明了‖· ‖XS,X*或者‖.‖X.X*均是范数,进而得到了空间任意元素对满足Birkhoff正交对称的充要条件.另外,我们在Rn(n ≥ 2)空间上引进了 u维广义Day-James空间的定义并且给出其刻画.3.考虑了赋范空间中单位球面上两元素x,y满足Birkhoff正交和等式‖x + γy‖-‖x-γy‖=γ(0<γ<+∞)的充要条件.并且利用Birkhoff正交和isosceles正交之间的关系给出赋范空间成为内积空间的一些充分条件.所得结果推广了已知的事实.4.考虑了经典的Bhatia-Semrl定理的等价与推广问题.利用已有的矩阵元素的Bhatia-Semrl定理、C*-代数元素的Bhatia-Semrl定理、HibertC*-模中元素的Bhatia-Semrl定理,证明了这三类Bhatia-Semrl定理等价于对应的最小最大等式或者最小极大等式.最后提供了一个最小极大等式,可用于解决广义特征值问题.
其他文献
目的调查人群睡眠质量与功能性消化不良(FD)患病率并分析两者之间的关系。方法采用随机分层整群抽样方法,对日照市石臼街道常住人群进行面访式问卷调查。采用罗马Ⅲ标准诊断FD,阿
西秦岭位于秦祁昆成矿域,西南部为夏河-崖湾印支-燕山期金-汞-锑成矿带,东北部为甘加-漳县燕山期铜-金-铅-砷-钨-锌-铁成矿带。区域地层总体分布方向为西北,与区域构造线方向
目的探讨触摸护理在小儿眼科全麻围手术期的应用效果。方法将128例患儿随机分成对照组和实验组,各64例。两组均行常规护理,实验组在此基础上,应用触摸护理。比较患儿术前配合及
研究目的和意义随着我国老龄化程度不断提高,预防跌倒也就成为国家和社会以及广大研究者共同关注的问题。老年人因外界干扰造成的姿势控制能力下降而造成跌倒已经被广大研究
从教学管理、教师和学生等各方面分析目前双语教学存在的问题,提出临床学院应通过加强教学管理、加强双语师资培训及全方面加强学生英文水平等措施,进一步提高双语教学的水平