【摘 要】
:
在当今科技迅猛发展的时代,智能制造技术所具有的先进性和复杂性更加体现在了现代工业生产过程中,市场竞争也更加激烈,这种复杂的市场环境给制造企业带来了巨大的挑战。科学合理的生产计划和排产调度,对于降低产品成本、提升企业经济效益会产生巨大的作用。因此,对于智能工业制造企业而言,优化车间调度方法是目前的一个研究热点。在智能工业产品零部件制造过程中,企业不仅要考虑到工件的冲压加工工序,为提高产品的强度和韧性
论文部分内容阅读
在当今科技迅猛发展的时代,智能制造技术所具有的先进性和复杂性更加体现在了现代工业生产过程中,市场竞争也更加激烈,这种复杂的市场环境给制造企业带来了巨大的挑战。科学合理的生产计划和排产调度,对于降低产品成本、提升企业经济效益会产生巨大的作用。因此,对于智能工业制造企业而言,优化车间调度方法是目前的一个研究热点。在智能工业产品零部件制造过程中,企业不仅要考虑到工件的冲压加工工序,为提高产品的强度和韧性,工件的热处理过程也是重点需要关注的问题。如何在这种制造系统中进行生产调度,从而保证工件的交货期、降低生产成本、提升热处理炉的使用效率等,已经成为一个备受关注的研究问题。本文通过对国内外相关研究成果的分析和总结,着重对制造企业生产过程中热处理车间和冲压车间联合调度问题开展研究。通过对冲压车间和热处理加工车间以及冲压机床和热处理炉的工作特点进行分析,构建了热处理和冲压车间联合调度的数学模型,给出了调度目标函数。依据该数学模型,设计出了相应调度算法用于解决冲压车间和热处理车间联合调度问题。本算法在改进遗传算法基础上通过规则搜索的方法对问题进行优化。通过仿真对比实验,对本文所研究的算法可行性和有效性进行了测试和评价。
其他文献
在我国建筑业日趋于高科技、信息化,BIM即building information modeling,建筑信息模型,它的发明与应用被整个建筑行业称之为其在建筑工程信息化方面所引起的第二次工程技术革命。早在2003年,BIM技术已经由国外引入到国内,只不过在最初几年,受到国内技术发展的制约并没有得到很好的推广,但是近些年来,随着国内科技的进步以及数字信息化时代的到来,BIM技术已经逐步在国内推广并得
互联网的高速发展使得国内外媒体由传统媒体过渡到了新媒体时代,各种自媒体平台层出不穷,涌现出了一大批自媒体人。自媒体人的创作内容吸引着一批粉丝订阅其运营账户,通过粉丝对于他们创作作品的互动情况,分析数据最能够反应运营情况。粉丝态度、评论舆情是对创作内容最直观的反馈,有利于自媒体人了解自己粉丝看法观点,直击粉丝内心想法。另一方面,可以通过广大粉丝评论对热点事件的看法观点所形成的态度进而了解舆情。将这些
点击率(Click Through Rate,CTR)预估是商业推荐系统中的一个重要任务,其关键是特征交互。精准的预估用户对广告的点击率能够为广告平台创造巨大的效益,为广告主带来即时点击并提升影响力,为用户提高服务质量。然而,由于特征交互极为复杂灵活,且真实场景的点击数据中的广告存在冷启动问题,建模有效的交叉特征极具挑战。本文针对点击率预估问题进行分析与研究,结合数据中的特征信息和域信息进行建模,
大数据时代,数字图像在各领域得到越来越广泛应用。例如,在安防、医疗等特殊领域高质量图像对专业人员的判断起着至关重要的作用,在社交媒体、电子商务等领域高质量图像能够给用户提供更好的应用体验。但在现实世界的实际应用中,由于硬件设备受到成本、自然环境等因素的影响,导致采集到一些分辨率低、质量差、纹理细节模糊的图像,提高这部分图像质量是一个亟需解决的问题。所以,采用图像超分辨率技术对图像进行高质量重建,以
三维块匹配联合滤波(Block-matching and 3D filtering,BM3D)作为目前最好的图像去噪算法之一,能够有效地去除图像中的噪声,但是仍然存在着丢失图像细节信息、对高噪声图像(σ≥40)去噪效果差、算法时间复杂度高等问题。图像去噪的目的是在去除噪声的同时,尽可能地保持图像有用信息。由于图像的边缘、纹理等细节信息和噪声,都主要集中在图像信号的高频部分,因此图像去噪的主要目标就
我国高速列车的发展处于世界领先地位,作为动车组旋转机械关键部件的主要组成部分,齿轮箱运行时的健康状况至关重要,一旦发生故障,将产生不可估量的费用损失,尽早进行故障诊断与分析,降低维修成本并且减少事故的发生,具有一定的工程意义。随着人工智能,深度学习的发展,基于数据驱动的方法成为故障诊断的主流技术,传统的方法是对振动信号进行降噪处理,时频分析及特征提取,最后人工对故障进行特征匹配,判断旋转机械是否出
车标识别为智能交通系统提供技术支撑,在智能交通业务应用中高效、准确识别车辆起着重要的作用。实际生产环境下的车标图像存在光照不均、车标倾斜,污损及复杂背景等影响因素,车标识别一直具有很大的挑战。传统的车标识别算法,主要以手工设计特征为主,缺点是:算法抗干扰能力有限,鲁棒性不高,不能准确有效的进行车标定位和分类。与手工设计特征相比,基于神经网络的车别识别算法在解决复杂环境的车标定位和车标识别问题具有极
口语理解作为任务型对话系统的第一个流程,在对话系统领域中具有重要的研究意义。目前,对于口语理解任务的研究多基于深度学习方法,在每个对话领域都需要大量的标注对话数据来支撑模型的训练,因此带来相当大的数据成本。而针对数据问题被提出的小样本学习目前还处于初级阶段,主要应用在图像分类任务中。本文将小样本学习方法应用于口语理解任务,对于口语理解的两个子任务——意图识别和语义槽填充分别提出了适用于小样本数据的
随着互联网的快速发展以及人们对教育需求的不断增长,2012年出现了大规模在线开放课程这种新型的在线学习模式。伴随着大规模在线课程平台的快速发展,任何人均可上传课程到平台上来,课程数量不断增加且教学内容存在大量冗余,出现类似电商平台的信息过载问题;同时,由于在线开放课程平台缺少清晰的学习架构引导用户制定学习策略,用户难以从海量数据中选择适合自己的课程。因此,本文旨在利用推荐系统,分析用户的历史行为,
面向电子病历的临床术语标准化是将电子病历中的临床诊断实体对应到标准知识库中的标准实体。临床诊断实体的标准化描述主要采用国际疾病分类编码规范(International Classification of Diseases 10,ICD-10)。临床术语标准化是医学自然语言处理中的重要研究课题,是对临床医疗文本进行后续挖掘和分析的基础。目前英文临床术语的标准化研究较为深入,但是中文领域的相关研究相对