Fe3O4基磁性复合物在染料废水处理及锂离子电池中应用

被引量 : 0次 | 上传用户:fengyun163
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
磁性复合物最为一种新型的功能材料而备受关注,已经被广泛应用于磁记录、微波吸收、靶药载体、核磁共振成像、催化剂和电化学领域。本文主要研究Fe3O4/PANI磁性复合材料作为催化剂超声辅助降解甲基橙。首先,以FeCl3·6H2O为原料,乙二醇为还原剂和溶剂,高温溶剂热法合成Fe3O4纳米颗粒。其次,利用原位聚合方法成功制备了四氧化三铁/聚苯胺(Fe3O4/PANI)复合微球。对样品进行了X-射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、Ze
其他文献
电沉积技术是最常用以及最有效的金属表面处理方法之一。与等离子喷涂、物理气相沉积以及热喷涂等技术相比较,电沉积技术具有操作简单、成本低廉、设备简单等优势,而且不受基
染料是色素的一大类,染料的发现和使用历史悠久。古代人们就已学会提取和应用天然染料,现代,随着有机合成技术的发展,越来越多的有机合成染料被发明和使用。部分合成染料被证明有
硫化亚铜(Cu2S)由于具有较高的理论比容量(337 mAh·g-1)、较高的电子导电性(ca.104 S cm-1)、平坦的电压平台以及原料在自然界中丰富的储量,被认为是具有前景的下一代锂离子电池正极材料。然而,在实用化之前,硫化亚铜基正极材料还有些需要改进的地方。硫化亚铜电极在充放电循环过程中产生的多硫化物(Li2Sx,x>2)易溶于有机电解液中,从而导致活性物质的流失,容量衰减很快。本文采用
明胶是一种可降解的生物高分子,价格便宜,来源丰富,无毒,生物相容性好,广泛的应用于食品、生物与医药等领域。本文系统地研究了明胶的粘度行为,以及明胶/纤维素的流变性能;制备
本文的研究内容包含实验和理论计算两个方面。实验方面,主要目的是合成具有潜在抗肿瘤活性的新型有机物及其金属配合物,合成的目标化合物有两类:1)通过芳环偶联反应制备具有大的共轭结构的新型化合物。用到的反应是本实验室最近发现的一种新的偶联反应——3,3,6,6,-四甲氧基-1,4-环己二烯(TME2)与具有芳香性的化合物(如呋喃、吡咯等)反应,可以得到取代苯环与该芳香化合物的偶联产物——该反应具有操作简
自碳纳米管在1991年发现以来,管状和纤维状的导电聚合物由于其独特的性质与应用在科研领域备受关注。聚吡咯(PPy)的高能量储存能力、良好的导电性、低消耗、空气中的稳定能力及其在很多领域中的潜在应用,使其在导电聚合物中脱颖而出。管状PPy已广泛应用在传感器、电子器件以及超级电容器等领域,其管状结构不仅为电子流通提供了一定的通道,使电子流动阻力大大减少,比传统颗粒状PPy更适合于电子的转移,而且较大的
多金属氧酸盐(POMs)是由前过渡金属离子通过氧连接而成的金属.氧簇类化合物。由于多金属氧酸盐具有确定的结构,多样化的组成和优异的物理化学性质而在催化、生物、医药、分析化