【摘 要】
:
超大规模城市轨道交通系统承载了量级庞大的客流,乘客的出行路径选择行为也呈现多样化和非常规的趋势。在线网负荷较大的时段,乘客可能会选择特殊的出行路径来提高出行体验,反向绕行行为是其中一种典型现象。反向绕行行为是指在部分客流负载较大的车站,乘客为避免在站台留乘,缩短候车时间或者上车后获得座位,在出发车站先乘坐反方向列车,然后在不拥挤的车站折返,去往目的车站。本文针对存在反向绕行情况下的城市轨道交通乘客
论文部分内容阅读
超大规模城市轨道交通系统承载了量级庞大的客流,乘客的出行路径选择行为也呈现多样化和非常规的趋势。在线网负荷较大的时段,乘客可能会选择特殊的出行路径来提高出行体验,反向绕行行为是其中一种典型现象。反向绕行行为是指在部分客流负载较大的车站,乘客为避免在站台留乘,缩短候车时间或者上车后获得座位,在出发车站先乘坐反方向列车,然后在不拥挤的车站折返,去往目的车站。本文针对存在反向绕行情况下的城市轨道交通乘客路径选择行为进行研究,提出反向绕行发生车站提取、车站反向绕行乘客的识别和反向绕行路径生成方法,并构建考虑反向绕行行为的路径选择模型,修正了传统路径选择模型因未考虑绕行路径所产生的误差,使得模型估计结果更符合乘客出行的实际情况。首先以北京市轨道交通为例,基于AFC等客流数据,从时间和空间的角度对客流的分布规律及其不均衡性进行分析。然后通过对O-D旅行时间的分析,描述并刻画了反向绕行行为。选取典型车站,分析反向绕行行为的旅行时间特征,并从乘客出行目的和车站地理环境的角度分析发生车站的特点。其次,针对反向绕行行为涉及到的发生车站提取、绕行乘客识别、绕行路径生成等问题,利用数据驱动的方法开展研究。提出了一种基于TF-IDF指标量化方法和FCM聚类算法的反向绕行发生车站识别方法。针对提取出的反向绕行行为发生车站,提出一种基于混合高斯模型和线性规划模型的反向绕行行为识别和路径生成方法,采用EM算法和隐式枚举算法求解模型,解决了车站反向绕行乘客的识别和反向绕行路径的生成问题,补充了路径选择研究中有效路径集合。为进一步揭示乘客反向绕行行为的产生机理,构建考虑反向绕行的路径选择模型。先从乘客个体属性、路径属性和运营服务属性三个角度定性分析路径选择行为的影响因素,并通过问卷形式调研筛选主要影响因素。然后构造考虑反向绕行费用的广义费用函数,并建立基于相对效用的路径尺度Logit模型,采用遗传算法对模型参数进行标定。模型考虑反向绕行因素的影响,对现有的路径选择模型进行补充和修正,解决了存在反向绕行行为的乘客路径选择概率估计问题。最后,以北京地铁为例,对本文提出的方法和模型进行分析和验证。结果表明,车站反向绕行乘客识别方法和绕行路径生成方法可以有效反映乘客的实际出行路径,与调研数据基本一致;与未考虑反向绕行和采用绝对效用的路径选择模型相比,本文提出的模型的计算结果与调研数据误差更小,更符合乘客的实际选择情况。
其他文献
随着国民经济的发展和科技水平的快速提高,我国各行业已逐渐实现高质量蓬勃发展,国家对卷钢的需求量也随之增加。卷钢作为我国的基础工业产品,运输里程长、自身重量大且生产地大多处于我国的内陆地区,这些鲜明特点使铁路运输成为了最常用的卷钢运输方式。由此可见,针对卷钢的铁路装载加固安全至关重要,它不仅决定了铁路卷钢运输的安全性,还关系着铁路货物运输效率等因素。卷钢座架是现阶段极其常见的一类铁路货物装载加固装置
近年来,我国城市轨道交通线路的发车频率随着客流需求的增加而逐渐提高,高密度的运输服务对折返站的折返效率提出了更高的要求。折返站作为线路运营中的关键节点,其折返能力直接影响到整条线路的服务水平。本文从运营角度出发,在传统列车运行图编制的过程中同时优化列车在折返站内部的进路占用时长和进路排列,旨在进一步提高线路通过能力,主要的研究内容如下:(1)通过分析国内城市轨道交通线路的运营形势,阐明了本文的研究
随着两条中低速磁浮列车商业运营线的开通运营,中低速磁浮列车的能耗问题越来越受关注。与轮轨列车相比,中低速磁浮列车不仅有牵引能耗,还增加了悬浮能耗,且悬浮能耗占列车总能耗的30%左右,中低速磁浮列车的能耗的研究还处于初步阶段。因此,研究中低速磁浮列车节能驾驶问题具有重要的理论意义和应用价值。针对中低速磁浮列车特有的技术特征,本文借鉴基于伪谱法的轮轨列车节能驾驶的研究成果,研究了中低速磁浮列车的节能驾
车底运用计划作为城市轨道交通车底完成运输任务的重要依据,对协调企业运营成本和乘客服务水平具有重要意义。在长期车底运用过程中,车底在达到检修标准时需及时进行检修作业。鉴于此本文车底运用计划的涵义是考虑车底周转和检修要素的车底使用综合计划。此外,列车运用的不均衡性会导致车底不均匀磨耗,影响车底使用寿命。在此背景下,如何安排车底在承担运输任务的同时减少运营成本,并保证车底运用均衡性,是亟需解决的问题。本
基于通信的列车运行控制(Communication Based Train Control,CBTC)系统是目前国内城市轨道交通中应用最广泛的列车控制系统,它以列车和地面设备的通信网络为基础,通过车地间的双向通信实现精准的列车运行控制。由于商用计算机与通信技术的引入,CBTC系统面临巨大的信息安全风险。攻击者可以利用CBTC系统网络通信设备的漏洞,对系统发动数据篡改攻击,影响列车的行车效率甚至引发
目的:采用HPLC法同时测定妇科调经片中芍药内酯苷、芍药苷、阿魏酸、α-香附酮、去氢紫堇碱5个成分的含量,以期为该制剂的质量控制提供参考。方法:采用Waters XBridgeTM C18(250 mm×4.6 mm,5μm)色谱柱;流动相为0.15%磷酸溶液-乙腈,梯度洗脱;后运行5 min;流速为1.0 mL/min;检测波长为230、313、250、334 nm;柱温为30℃;进样量为10μ
地铁车站作为轨道交通线网中客流集散的重要节点,结构复杂,内部活动空间有限且相对密闭,容易发生各类安全事故。其中,车站内火灾应急疏散一直是研究热点。目前,车站应急疏散问题主要从行人个体微观模型优化和疏散路径计算与评价等方面进行研究。经典的微观模型中,社会力模型研究较多围绕模型构建、参数取值、考虑人员心理影响等方面,空间疏散方面研究较少。此外,从全局角度求解疏散路径时考虑不足,对于地铁车站火灾应急预案
磁悬浮列车是一种现代化、高科技的轨道交通工具,它通过直线电机产生的电磁力实现列车与轨道之间的无接触悬浮和导向。列车内外有较多的电气、电子设备,这些设备产生的电磁能量可通过传导发射和辐射发射两种方式发射干扰到车内设备和电缆,以及在铁路附近的仪器或设备。因此,研究高速磁悬浮列车的磁场分布具有重要的意义。高速磁悬浮列车的电磁发射源包括长定子直线同步电机、车载设备及强电线缆。本文以常导型高速磁悬浮列车为例
近年来,我国经济水平迅速攀升,城市化进程不断加快,各大城市均铺设了大量地铁线路以缓解地面的交通压力。随着地铁列车运用里程的不断增加,国内外开展了大量线路跟踪试验,构架关键部位损伤演变规律已初步探明,但是不同线路工况与列车运行状态对构架关键部位损伤的影响仍需要深入研究。本文以某B型地铁转向架构架为研究对象,在北京地铁开展了构架动应力跟踪测试工作,依托大量的实测数据,搭建了集数据管理与数据处理于一体的
枢纽站以其联通市内外交通的功能,担任着城市客运交通系统的重要角色。在铁路枢纽站,由于高速铁路列车的到达具有离散性,因此乘坐铁路列车到达枢纽站的换乘客流同样具有短时高聚集的特点。在所有可供选择的城市公共交通中,城市轨道交通因其准时、快捷等特点,在枢纽站客流换乘集散方面起着至关重要的作用。所以,对于枢纽站高速铁路和城市轨道交通换乘组织问题,优化枢纽站接续运营的城市轨道交通列车时刻表,可快速疏散高速铁路