群智感知网络中可信认证及激励机制的研究

来源 :华东交通大学 | 被引量 : 0次 | 上传用户:yi123400
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着物联网技术快速发展,群智感知作为一种新的感知模式,相较传统的感知模式具有成本低、扩展性强以及覆盖范围广等优势,因此在工业和学术界吸引了越来越多的关注,技术的发展也使其被广泛的运用到了各个领域之中。然而,在感知数据的过程中,用户将消耗如电源,网络流量和时间等资源。此外,由于无线网络具有开放性,用户身份很容易泄露,恶意攻击者对用户的身份信息与隐私构成了潜在威胁。因此,可信认证阶段是至关重要的一部分,信息共享带来潜在的隐私威胁,导致了用户参与度降低。因此,在群智感知网络中,为了在保护感知任务请求者隐私的前提条件下招募更多参与者来提供有效的感知数据,合理的可信认证以及激励机制的设计显得尤为重要。为此本文旨在设计一种能够高效低耗的完成可信认证的认证协议,以及有效提升感知任务参与者数据数量与质量的激励机制模型。针对对群智感知数据使用者的可信认证,本文设计了一个基于无线体域网(WBAN)的轻量级持续认证协议,该持续认证协议分为四个阶段;分别是生物密钥的生成阶段、注册阶段、静态认证阶段以及持续认证阶段。通过生理信号生成生物密钥的方式有效的避免了传感器节点仿冒攻击,通过轻量级的持续认证技术有效降低了资源消耗、通信开销以及计算复杂度,有效的节省了时间和精力,并保证该认证节点没有被恶意替换,还是最初那个传感器的节点。针对群智感知系统中参与者积极性和数据质量不够高的问题,本文提出了一种基于平台兴趣度的移动群智感知激励机制模型PIP。该感知激励是根据感知平台对感知任务的候选参与者完成任务的努力程度,以及上传感知数据的质量来量化评估感知平台对该候选人产生的兴趣度。通过离线和在线结合的两步骤动态拍卖方法竞选出获胜者参与感知任务并予以相应报酬。文章最后通过对轻量级持续认证协议进行了BAN_logic安全性证明以及安全性能分析,体现出该协议的有效性以及高质高量的安全性能,同时从计算成本、通信开销、安全性能三个方面对本文认证方案进行了一个全面评估,并与相关认证协议之间就这三个方面进行了对比。结果表明,我们的认证协议具有轻量级、相互性、低成本的优势。通过本文提出的激励机制模型PIP的仿真实验以及对比实验结果表明,与现有方法相比,该模型能产生更大的平台效益、更小的数据冗余率以及消耗更少的运行时间。
其他文献
人群计数出现时间很早,最早的时候人们采用检测、回归的方法进行人群计数。随着深度学习的发展,人们也开始使用深度学习的方法得到一张图片的人数。在地铁场景中,实现人群计数有着很大的意义。本文按照人群密集程度将地铁站台场景划分为密集场景,将站厅和出入口场景划分为稀疏场景,分别进行计数。一、密集场景下静态人群计数网络。密集场景采用了自适应的远近景划分计数网络(Gr CNet)进行计数。该模型分为两个阶段,第
随着机器学习算法模型规模和数据量的高速增长,单个节点不能够有效的承担大规模训练所需的计算和存储需求,因此在分布式集群中运行大规模机器学习算法已成为常用方法。分布式机器学习关键在于如何解决划分训练数据、分配训练任务、调配计算资源、整合分布式的训练结果等问题,以达到训练速度与训练精度的平衡。因为现在大规模机器学习领域的主要矛盾仍然是训练数据量过大导致的训练速度缓慢,所以目前常用的分布式机器学习方法是采
机器人的应用范围已经越来越广泛,与人一起工作形成人机协作共同完成任务已经是随处可见。在传统的人机协作中,为保证安全,机器人与人要处于分离状态,这种状态下的人机交互维度单一、效率低下。在新型的人机协作中,机器人与人可以安全合作分享同一个工作空间,与人的能力形成互补,充分发挥机器人与人之间的优势,从而提高自动化程度。在此环境下,机器人应该及时对人的动作做出预测,这一点尤为重要,使用给定的运动数据来学习
乳腺癌是中国女性最常见的癌症之一。早期发现、正确诊断对提高生存率极为重要。在临床实践中,乳腺钼靶x线摄影术是一种广泛用于乳腺癌早期筛查的最可靠的方法。为了正确地发现和诊断乳腺癌,放射科医生必须每天阅读大量的乳腺钼靶x线图像,持续的高负荷工作不可避免地给他们造成视觉和心理疲劳,导致诊断结果受影响。因此,有必要使用计算机辅助检测和诊断技术给放射科医生提供第二意见,协助放射科医生进行准确诊断。随着现代科
近年来,道路交通发展愈发快速,现代城市的交通情况复杂多变,仍存在许多问题需要改善。交通流信息作为道路交通状况的一项重要依据,其测算工作不容轻视。目前有着多种采集交通流信息的方式,其中采用图像检测的方法不仅可以减少其它方式的信息疏漏,同时还能够更方便地传输给交通部门,使得交通部门能够实时地掌握交通流状况。针对交通流信息智能化提取方法研究,以实现城市交通流信息的采集高效性和信息管理的信息化、智能化,提
简要评述了中高能核物理中核子-核子(NN)碰撞的国际研究现状,期望对兰州重离子加速器冷却存储环(HIRFL-CSR)的物理工作有益。文中主要涉及近年来短程核力研究进展与存在的困难,及与STAR和PHENIX高能重离子实验新进展相关的若干NN两体碰撞基本问题等,特别关注奇异性产生与重味产生方面的NN碰撞物理,以便更好地认识中高能NN碰撞研究的重要性。
胃肿瘤在我国是排名首位的恶性肿瘤,由于胃癌早期病人与正常人无太大差别,当就诊时大多已是晚期胃癌,预后差。深度学习模型可以辅助医生诊断病情,及时识别出胃肿瘤细胞,进而提升患者的生存率,胃肿瘤细胞图像作为典型的小样本数据需要经过数据增强才能在深度学习模型中训练。旋转、平移、翻转等是经典的数据增强技术,可以成倍扩充样本集,但是这些技术生成的图片,样本多样性增加非常有限,在深度学习上表现不好。而生成对抗网
随着互联网技术的不断进步,互联网中的信息更加呈现出杂乱无章的特点,尤其是海量信息中掺杂的负面以及虚假信息对社会带来各种不良影响,于是对信息的整理和归纳就显得十分有必要。文本分类技术具有对文本进行快速且准确自动分类的优点,因此得到了大家的强烈关注并成为了研究热点。早期的文本分类方法主要是利用传统的机器学习算法,虽然有一定的成效但还是会出现各种问题。本文主要利用深度学习方法和注意力机制来解决文本分类问
药理学作为制药工程专业的一门专业必修课,是该专业学生了解药物作用机制、新药研发、临床应用等知识的重要途径,对专业的认识与发展有着重要的基础知识支撑作用。目前制药工程专业中药理学教学存在理论课时量少,缺乏实践课时,且其基础课如生理学、解剖学课时不足的情况,导致学生很难深入理解与掌握这门课程的理论与实践技能,因此需要探索一套适宜的教学模式,在现有条件下加强学生对药理学知识的融会贯通、了解学科前沿、激发
自改革开发以来,我国建筑行业的飞速发展在不断突破世界纪录。但与之而来的是建筑行业面临的高新技术更新与快速迭代等巨大压力,工程项目管理中的许多问题亟待解决。随着互联网技术的发展,工程项目各参与方都希望借助互联网发展带来的机遇解决工程项目管理问题,因此工程项目信息化管理成为了建筑领域发展的焦点。2003年,自BIM技术传入中国,使得我国的建筑行业领域再次出现了一次革命,加快我国建筑行业信息化发展的速度