【摘 要】
:
汽车智能化产业逐年快速发展,为汽车技术面临的各方面挑战提供了更多高效且智能化的解决方案。近年来,汽车主动避撞技术作为汽车安全领域的关键技术之一,已成为改善和解决车辆碰撞事故的主要手段。然而面对复杂多变的真实交通环境,单一纵向制动的汽车避撞系统显然不能覆盖所有的危险事故场景,因此主动避撞技术需针对多发典型工况细化研究,以应对更多危险事故场景。在日常驾驶环境中前车危险切入极易发生追尾和斜角碰撞,此类工
论文部分内容阅读
汽车智能化产业逐年快速发展,为汽车技术面临的各方面挑战提供了更多高效且智能化的解决方案。近年来,汽车主动避撞技术作为汽车安全领域的关键技术之一,已成为改善和解决车辆碰撞事故的主要手段。然而面对复杂多变的真实交通环境,单一纵向制动的汽车避撞系统显然不能覆盖所有的危险事故场景,因此主动避撞技术需针对多发典型工况细化研究,以应对更多危险事故场景。在日常驾驶环境中前车危险切入极易发生追尾和斜角碰撞,此类工况发生率占总事故8%但少有针对性相关研究,因此本文将对前车危险切入工况下的主动避撞技术展开研究。首先,本文依托于美国高速公路管理局(NHTSA)统计的事故案例,从中选取2种高发生率的典型危险切入工况作为交通场景分析对象。在驾驶模拟器中还原该场景,同时以前车切入时刻距离值作为危险程度区分标准,其距离为15m、30m、45m。为获取驾驶员避撞行为数据本文招募志愿者开展驾驶模拟实验,并基于志愿者实验结果开展驾驶员避撞行为分析。数据分析结果显示;82.5%的驾驶员采取纵向制动避撞,17.5%的驾驶员采取转向换道操作进行避撞。然后分析实验过程中车辆的制动减速度、制动时刻TTC以及THW值等关键参数,基于该参考数据搭建后续避撞策略。其次,考虑本文所建主动避撞系统为全工况避撞系统的补充研究。本文搭建前车切入状态识别模块,作为介入本避撞系统的先决条件。基于Simulink/stateflow工具搭建避撞策略,结合MATLAB/Driving Scenario Designer模块进行策略逻辑闭环测试,初步验证策略的逻辑正确性。在转向换道避撞方面,本文采用表达简单计算效率较高的五次多项规划换道路径,基于模型预测控制原理对车辆换道路径进行跟踪,实现控制器控制精度以及控制平顺性。最后,基于Prescan/Matlab/Simulink和Carsim搭建联合仿真平台,对上述两类共计6组典型工况进行仿真验证。仿真分析结果显示:该系统均成功避免碰撞,停车距离处于0~5m区间,相比较于其他避撞系统处于正常合理范围。在低速45km/h场景3组实验中均采取纵向制动避撞,危险程度较低的45m、30m两组施加减速度分别约为0.35g和0.75g分级制动,主车速度变化较为平缓。15m组危险程度较高以约为0.7~0.8g减速度全力制动;高速80km/h场景30m、45m组在制动距离足够情况下采取纵向制动,危险程度较高的15m组纵向制动无法满足避撞需求,采取转向换道避撞。在转向换道方面;换道路径横向跟踪误差峰值不超过0.14m,占换道横向总距离仅0.037%,且车辆航向角变化平稳即车辆控制状态良好。相较于其他基于纵向制动的避撞模型,本避撞系统在前车切入本车道时刻提前0.5~0.9s预判前车切入状态,在制动无法避免碰撞时提供转向避撞选择,大大提升避撞成功率。从避撞方式选择分析,该系统以纵向制动为主要避撞方式,特定情况触发转向换道避撞指令。上述研究结果显示系统特性与志愿者实验中的驾驶员避撞操作拟合度较好。
其他文献
准双曲面齿轮传动是后桥广泛采用的齿轮传动形式之一,具有传动比大、承载能力强、传动平稳、噪声低等优点。随着传统微车企业车型升级,客户对车辆的舒适性要求越来越高,整车企业也对后桥的NVH性能提出了更高的要求。后桥主减速器齿轮的传动噪声是评价后桥质量的一个重要指标,噪声大也是齿轮的主要故障模式之一,因此控制齿轮噪声显得至关重要。传动误差、接触印痕是决定齿轮噪声的主要因素,在后桥总成设计时考虑系统支撑刚性
角位移是测量中最基本的物理量之一,随着先进制造业与测试计量等领域的快速发展,精密测量技术对测角系统的精度要求越来越高,同时也诞生了多种精密测角。针对常用的两种角位移传感器,圆光栅存在栅线加工难度大制造成本高,以及旋转变压器各对极一致性难以得到保证等问题,作者在前期光场式时栅角位移传感器的研究基础上,进一步从LED的照度分布特征出发深入开展了光源均匀性设计及误差理论研究,其主要研究工作如下:(1)开
面对国际市场的经济性要求和日益严苛的轻量化需求,复合材料凭借其独特的优势广泛应用于各领域。在航空航天领域中,复合材料逐渐替代传统的航空材料。连续纤维增强材料作为复合材料的一种,其可设计强,通过铺层优化可以充分发挥出材料的优势,进而达到减重增益的效果。然而纤维增强材料因其组分材料的各向异性和非均匀性等特点,会增加设计变量的离散性和铺层信息规模,提高了优化设计的难度。同时,在进行减重优化后可能会造成结
地震、飓风以及洪水等灾难性事件的频繁发生会严重影响工程结构的健康状态并诱发潜在的危及生命的情况。这些外力的影响在设计之初是不容易被预测到的。由于这些原因,近年来被称为结构健康监测(SHM)的技术已经出现,为工程学科的不同分支开辟了新的研究领域。结构健康监测的主要目的是在结构的使用寿命内检测结构或材料的性能退化程度。SHM系统中包含有大量的节点阵列,这些节点连续地监测一定数量的传感器,根据所监视传感
伴随网络时代的快速发展,汽车与通信、信息等多领域的跨界融合迎来了汽车行业的智能网联化时代。智能联网的加入不仅提高了驾驶员的驾驶体验感,减缓了驾驶员的驾驶疲劳,同时也降低了汽车事故的发生。但汽车在行驶过程中遇到ECU被攻击时,则可能面临部分ECU失控影响驾乘人员安全,或在停车时被控制解锁造成车主财物损失等诸多问题。目前,引导汽车电子软件发展的AUTOSAR组织通过E2E(ECU to ECU)通信防
本文以某国产品牌SUV轿车为研究对象,运用汽车高频噪声分析方法——统计能量分析法(Statistical Energy Analysis,SEA)进行声压级分析,对样车进行高频建模,确定了车内各个部件对驾驶员和后排乘客的噪声贡献量并对贡献量较大的部件进行声学包优化,对贡献量较小的部件进行降本方案设计,最终使整车声学包重量减轻5kg,驾驶员和后排乘客耳旁的噪声声压级降低2.3d B。具体研究工作如下
近些年来,配备自动变速器的乘用车占比逐渐增高,其中DCT(Dual Clutch Transmission)变速器是比较热门的一种新型变速器,越来越受到各大汽车公司青睐。伴随而来的问题是DCT变速器易产生敲击噪声,变速器敲击噪声是汽车传动系统中一种主要的噪声,具有噪声级跳跃和宽频带现象,容易造成驾乘人员的烦躁,已成为影响整车品质的重要问题之一。国内对于手动变速器齿轮敲击的研究已经较为全面,但对于D
路径规划模块是无人驾驶技术的重要组成部分,行为决策和轨迹规划作为路径规划模块中的关键技术,是无人车安全行驶的重要保障。针对无人车在多车道复杂变道公路场景中的行驶安全性、乘坐舒适性和通行高效性等方面的需要,提出了一种多约束局部路径规划方法,为无人车规划出一条安全且舒适的行车轨迹。论文的研究内容主要如下:首先针对无人车在多车道结构化复杂公路场景中的行驶问题,提出了一种有效的决策方法,使得无人车在道路行
随着计算机信息处理、人工智能、大数据、传感器等技术的快速发展,智能化、自动化在各个领域迅速发展,无人驾驶汽车的研究成为热门。轨迹跟踪控制作为无人驾驶汽车的最后一道技术,也是最为关键的一步,是无人驾驶车辆性能的主要评价标准和体现形式。因此,研究轨迹跟踪控制,找出能够快速、稳定地跟踪参考轨迹的控制策略,对实现无人驾驶有重要的实际意义。文章对模型预测控制(Model Predictive Control
配电箱金属表面腐蚀检测与腐蚀等级分类,可以协助配电箱维护人员做出及时的判断并进行相关的防腐处理。目前存在的金属表面腐蚀检测方法较为繁琐,耗时、耗力且对于操作人员的技术要求较高,很难快速得到较为准确的金属表面腐蚀等级信息。近年来作为深度学习算法代表之一的卷积神经网络在数字图像及视频处理方向取得了巨大成功,为本文利用深度学习对配电箱金属表面腐蚀等级检测提供了思路。本文配电箱金属表面腐蚀图像样本来自于湖