论文部分内容阅读
甲醛是我国室内空气主要污染物之一,具有污染普遍、污染时间长等特点,长期接触会对人体健康造成危害。因此室内甲醛污染去除研究具有重要意义。光催化氧化法是近年来室内空气净化研究的热点。由于室内甲醛浓度水平很低,从气态到催化剂表面的传质阻力较大,致使其传质速率较低。此外,现有研究中普遍应用镀膜催化剂反应器,光能利用率低。因此,现有光催化反应器光催化氧化甲醛的转化率偏低。为更好的将光催化氧化法应用于室内空气净化的实践,需要寻找新的反应器形式,并研究设计高效的光催化氧化空气净化器。基于固定式填充床反应器是所有光催化反应器中转化率最高的特点,本研究选用固定式填充床反应器对甲醛进行光催化降解研究。通过改变反应条件,了解反应器入口甲醛浓度、反应气体温湿度、气体在反应器内停留时间及气体氧含量等因素对甲醛降解效果的影响。自主设计光催化空气净化器,对其净化效能进行考察,并对其应用进行模拟。此外,应用计算流体力学软件对光催化反应器及空气净化器内空气流速分布进行了模拟。通过比较,选取黑灯管为紫外光源,置于反应器中心位置,并以玻璃珠作光催化剂载体,填充于反应器内,构成本研究光催化反应器。通过计算模拟该光催化反应器内空气流速分布,发现其轴向流速均匀,但径向流速,从灯管处至反应器器壁处逐渐减少,直至接近零,易造成催化剂的浪费。在此基础上,对光催化反应器进行改进,设计新型填充式空气净化器。净化器选取侧面进风,单个装置侧壁开孔方式采取上宽下细形式。应用风速仪对单个净化装置进气流速测定结果表明,空气在整个侧面基本以0.05 m/s的速度均匀进入净化装置。空气净化器单个净化装置空气流速计算模拟结果显示,净化装置内空气流速分布均匀。因此催化剂可以得到充分利用。应用固定式填充床反应器对甲醛进行光催化降解,发现接近室内甲醛浓度水平时,甲醛光催化降解受反应温湿度影响很小,受浓度影响显著,并且甲醛浓度5~20 mg/m3时,甲醛光催化反应速率适宜用L-H模型描述;而0.6~1.2 mg/m3时,甲醛反应速率更适宜用Power-rate law模型表述,说明高浓度时对甲醛光催化反应适用的L-H模型,对于室内浓度水平并不一定适用。计算出L-H模型表观反应速率常数k为4.666~9.470 mg/g-hr,甲醛在光催化剂表面的吸附平衡常数K为0.0098~0.0128 mg-1;Power-rate law模型的常数k和n分别为0.317~0.452和1.082~1.370。L-H模型的表观反应速率常数k和Power-rate law模型的常数k均随温度的升高而降低,且两模型的常数k与温度的关系都基本符合阿仑尼乌斯公式。应用本研究自主设计空气净化器对室内甲醛进行净化研究,结果表明:甲醛初始浓度0.727~1.815 mg/m3时,甲醛净化效率为84.7%~92.0%,净化过程中没有新的气态有机污染物生成。基于净化试验结果得出空气净化器甲醛反应速率方程,建立有甲醛持续释放实验房间应用空气净化器室内甲醛浓度变化数学模型,经实验结果证实模拟结果基本可以反应室内甲醛浓度变化情况。通过人造板材使用量与室内甲醛浓度关系方程,应用数学模型对空气净化器在实际房间的应用进行模拟,结果表明:空气净化器的间歇应用可以保持室内甲醛浓度低于国家标准,空气净化器应用频率与室内人造板材等级及使用量密切相关。本研究基于应用固定式填充床光催化反应器对甲醛降解的理论研究,自主设计新型填充式空气净化器,并对其净化效果进行模拟,为室内空气甲醛净化提供了一种高效、实用的空气净化装置。同时,对其应用提供了指导,有助于人们更好的去除室内甲醛污染,为人们提供安全的生活环境。