关于Romanov定理中的常数

来源 :南京师范大学 | 被引量 : 0次 | 上传用户:suiye001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
设α≥2,A={P+α|p是素数,k是正整数},A(x)=#{n|n≤x,n∈A}.Romanov定理:存在常数c>0,对于充分大的x,则A(x)≥cx.在该文中,我们研究了Romanov定理中的常数,发现了定理中的常数是可以计算.并且给出了一个具体的常数.
其他文献
该文讨论了一类新的半参数回归模型y=αx+g(t+βx)+e,在一组比较基本的条件下,得到了估计量的较好的一致强收敛速度.全文共分两章.文章的第一章简要介绍文章的有关背景,半参
DC规划是凸规划的更一般形式。DC规划作为一类很重要的非线性规划,在经济、工程、计算数学等领域有着广泛的应用,对DC规划(包括凸规划)的理论和算法研究具有重要意义。本文主
赋于非二倍测度条件下R上的函数空间以及奇异积分算子理论是近几年调和分析研究的热点之一.该文总结了非二倍测度条件下有界平均振动函数空间的三种不同形式BMO(μ)、BMOρ(
设G是图,若G中含有Hamilton圈,则称G为Hamilton图.该文利用设整数k≥1.非负有理数序列(α,α,…,α)称为H-序列中给出的插点引理和H-序列,给出有关Hamilton图的两个充分条件.
本文讨论的图都是有限、无向的简单图。  图G的正常边染色是映射:E(G)→{1,2,", k},对G中任意两条相邻接的边e1和e2,有(e1)≠(e2),则称是k边可染的.使得图具有k边可染的最
边界无单元法是将改进的移动最小二乘法与边界积分方程直接结合,从而得到偏微分方程数值解的一种无网格边界积分方程方法。  本文将边界无单元法应用于求解地下水流问题,建立