基于fMRI的大脑动态网络稀疏性建模与分类系统

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:kuaijizhidu2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
如今,通过脑成像技术研究精神类疾病诊断受到了越来越多的关注。基于功能磁共振成像(fMRI)数据对大脑功能连通性相互作用的探索和对大脑功能连接的动态性分割对于精神类疾病的研究至关重要。由于注意力缺陷/多动障碍(ADHD)是一种影响数百万儿童的慢性疾病,而且难以诊断,因此在疾病诊断的准确率方面仍有很大的改进空间。本文分别在分类算法研究和脑动态网络稀疏性建模方面有所改进,用以提升ADHD患者儿童和正常儿童的分类精度。在分类算法研究方面,本文提出了新型的ADHD分类架构。本文考虑到脑功能连通性的动态变化特性,用贝叶斯连通变化点模型(BCCPM)检测静息态大脑的动态性,在特征提取方面用局部二进制自动编码的方法提取局部特征,最后基于极限学习机的分类算法分类。在分类部分由KELM算法引入了层级不带核函数的HELM算法和层级带核函数的KH-ELM算法,分别在提出的分类框架上实验。实验结果表明在小数据集的限制下单层的KH-ELM算法得到了更稳定和高精度的分类结果,并且相比于现有的方法得到的分类结果更优。在脑动态网络稀疏性建模方面,本文提出了新的脑动态网络稀疏性建模方法,首先基于超图理论构建脑功能连接超网,由于认为脑功能连接网络是存在子网的,所以分别用稀疏表示的方法和图嵌方法加稀疏表示的方法提取超网的稀疏特征并实验。设计的实验框架是先通过BCCPM算法检测静息态大脑的动态性,然后用本文提出的方法基于超图理论建模脑动态网络并分别用不同的方法提取稀疏特征,最后将提取的稀疏特征分别用KELM算法和SVM算法完成分类并对比实验结果。通过本文提出的方法建模并提取的特征用于分类实验的实验结果表明在两种分类算法下都得到了更稳定和高精度的分类结果,同时可视化提取的稀疏特征发现同一样本经过动态分割得到的每段数据构建出的脑功能连接超网虽然结构相似但超边的权重不同,进一步体现了脑功能网络的动态变化特性。最后将fMRI数据预处理、动态性检测、局部特征提取、脑动态网络稀疏性建模和分类功能集成在一起,开发了大脑功能连接的分析系统用于ADHD疾病的分类。
其他文献
近年来,物联网发展迅猛,物联网设备已经走入千家万户,其数量规模呈爆发式增长。然而,物联网设备的普及在带来便利的同时也带来了安全隐患。物联网嵌入式设备大多在计算能力、存储能力等方面受限,这使得他们往往缺乏自我保护的能力。大量的物联网设备直接暴露在攻击者的视线内,导致物联网安全事件频发,物联网设备安全受到了广泛关注,保护物联网设备的安全成为物联网安全研究中的重点。远程证明允许一个可信实体验证远距离的、
对于大多数Android应用程序而言,网络在提供应用程序功能方面起着至关重要的作用,同时网络使用导致的错误占了应用程序崩溃的很大比例。由于许多与网络相关的错误只能在特定条件下触发(例如,当网络速度较慢时,网络响应需要较长的等待时间),因此现有的常规或GUI测试方法很难将其检测出来。据统计,较少有测试应用程序中网络使用情况的工作。为解决上述问题,本文从移动应用网络相关的错误展开研究,借助软件定义的思
子空间聚类是传统聚类问题的拓展,目的是将位于多个子空间的并集上的数据点分割到其相应的子空间中。稀疏子空间聚类(SSC)和基于低秩表示(LRR)的算法是最有代表性的两种子空间聚类算法。为了获取结构更加理想的系数矩阵,本文提出了基于图正则化的子空间聚类算法。子空间聚类算法的基本方法是,建立模型寻求数据理想的表示系数矩阵,然后通过增广拉格朗日乘子法求解模型,并根据系数矩阵构建相似度矩阵,最后用谱聚类的方
视频目标分割任务是计算机视觉领域中一个非常基础但又充满挑战性的问题。这个问题可以描述为:已知视频中目标在第一帧的分割掩膜,求解后续每一帧内对应目标分割的结果。视频分割技术作为大数据处理应用中的重要一环,在当代生活中发挥着越来越不可替代的作用。与此同时,视频目标分割技术已经在视频监控、虚拟现实、异常检测和自动驾驶等领域获得了广泛的应用。现存的方法主要有两个问题需要面对:第一点是在遮挡、外观变化大、背
视频拍摄中,图像采集环境差、成像系统退化和目标物体运动等容易导致采样视频存在不必要的模糊。研究者们提出了许多优秀的视频去模糊方法。但由于视频图像特有的时空相关性,如何综合利用时空信息依然有很大的改进空间。本文首先综合回顾了国内外研究现状,分析并实现了三种经典的视频去模糊算法:加权傅立叶聚合视频去模糊算法(Weighted Fourier Accumulation Algorithm,WFA),基于
随着数字化等信息技术的不断发展,数字图像信息不管是从数量上还是规模上都在飞速增长,如何管理和应用这些海量图像资源成为当前重点研究问题之一。就图像检索技术而言,传统利用人工标注关键字进行图像检索的技术已满足不了人们的实际需要,最近几年,基于内容的图像检索技术逐渐成为了新的研究热点。通常人们判别两张图像的相似程度并非根据图像的底层特征,而是根据图像描述的内容。而计算机对图像底层特征的理解较为容易,对获
为了探索大学生在网络学习中师生交互与学习投入的关系,以及自主动机和学业情绪在其中的中介作用,本研究采取问卷调查法,使用师生交互问卷、自主动机问卷、大学生学业情绪量表、学习投入量表,对563名大学生开展调研。结果发现:网络学习中的师生交互既可以直接显著正向预测学习投入,也可通过积极情绪间接影响学习投入,还可依次通过自主动机和积极情绪的链式中介作用正向预测学习投入,而消极情绪在其中的中介作用不显著。研
多模态视网膜成像可以为视网膜疾病的解读与评估提供多方位的信息,将不同模态图像提供的互补信息进行多模态融合可以辅助临床医生进行病情诊断及评估。本文利用图像处理和分析的方法来对视网膜病变图像进行多模态融合,主要包括以下研究内容:(1)提出一种基于频域光学相干断层成像技术(SD-OCT)和相干光断层扫描血管成像(OCTA)体数据的脉络膜新生血管(CNV)多模态融合算法,算法主要包括以下四个部分:预处理、
随着我国智慧城市、智慧交通等项目的持续开展,智能视频监控得到了越来越多的关注。智能视频监控主要包括对人或物的识别、运动轨迹跟踪以及个体状态或场景状态分析等任务。多目标跟踪算法为流量统计、异常行为检测等任务提供基础数据,是智能视频监控中的关键算法。因此,本文提出了基于深度哈希特征的多目标跟踪算法。此外,针对无人机道路监控场景,本文提出了基于多目标跟踪的异常行为检测算法,同时开发了一套无人机道路监控系
微光相机电子学性能评测系统用于评估微光相机的综合性能。随着微光相机技术的发展,用户对微光相机的性能提出了各种各样新的需求,完整、准确地评测微光相机的整体性能变得至关重要。然而,目前被国内外广泛认可的相机评测标准都是针对适光相机制定的,这些评测标准并不完全适用于微光相机。为了解决这个问题,本文提出了一套基于相机输出图像的微光相机成像电子学评测方法,并在此基础上搭建了一套可以高效操作的评测系统。通过微