论文部分内容阅读
MEMS振动陀螺是基于科式效应和微机械加工工艺的角速度传感器。因其体积、功耗和成本方面具有无可比拟的优势,广泛应用在消费电子、汽车安全和工业自动化等领域。然而目前MEMS振动陀螺的精度受自身尺寸约束和加工工艺等问题限制,难以满足高端应用市场需求,因此实现高精度MEMS振动陀螺是最主要的研究课题之一。模态简并和高品质因数是实现高精度MEMS振动陀螺主要途径。其中盘式谐振陀螺是目前最具精度潜力的MEMS模态简并陀螺之一,然而制造过程中较大的相对工艺公差会引入频率裂解和阻尼非对称等结构误差,导致其灵敏度降低和零偏性能恶化。此外,部分能量损耗机制限制了高品质因数的实现。因此为了最大程度解决上述问题,本文以盘式谐振陀螺结构为参考,在陀螺动力学分析的基础上,充分利用微尺度下的物理特性,从结构对称性和能量损耗机制角度深入探究了高度对称高精度MEMS陀螺结构的设计方法。主要的研究内容和创新点如下:1、MEMS类蛛网状盘式谐振陀螺的频率对称性研究。基于MEMS盘式谐振陀螺的频率裂解理论模型,确定频率对称性的影响因素。经探讨MEMS工艺的发展起源和掩模工艺特点,首次提出了线形结构工艺公差小于弧形结构的设想。基于设想,设计了全线形结构的类蛛网状盘式谐振陀螺(CDRG),且在同片晶圆上并排加工了频率相近的圆环状盘式谐振陀螺(RDRG)用以对比研究。最后结合理论、仿真和实验结果对比验证了这个设想。实验数据表明CDRGs最小制造相对频率裂解仅为29.9ppm,均值为79.1ppm,不足RDRGs的1/7,是迄今文献报道的MEMS轴对称陀螺中制造相对频率裂解均值和波动范围最小的一类陀螺结构。其优秀的频率对称性可实现低压模态匹配,降低了ASIC测控电路集成难度。2、MEMS类蛛网状盘式谐振陀螺的能量损耗机制和阻尼非对称性研究。针对存在部分能量损耗机制限制品质因数提升这一问题,全面建立类蛛网状盘式谐振陀螺的各个能量损耗机制理论模型。首先基于修正连续流体模型和能量传递模型推导了陀螺的气体阻尼解析模型;并依据Zener解析模型和COMSOL有限元模型分别估算了热弹性阻尼,继而利用完美匹配层法求解锚点阻尼,最后对品质因数进行测试验证。能量传递模型对应的总能量损耗机制理论模型估计值与实验结果非常吻合,品质因数温度系数误差不超过2%。此外,首次提出了晶向误差模型和环宽非均匀等效误差模型对阻尼非对称误差机理进行了分析,与实验结果部分符合。3、MEMS类蛛网状盘式谐振陀螺结构特性分析及性能测试以实现高性能陀螺结构的角度出发,通过模态叠加法和过载应力法分析MEMS类蛛网状盘式谐振陀螺的动力学特性和抗冲击能力,采用参数法确定谐振器结构尺寸,推导了电容换能器的静电激励和电容检测数学模型。并对结构非线性特性展开了研究,发现设计的电容换能器在谐振器的振幅放大效应下可有效降低了非线性效应。最后对比测试了CDRG和RDRG的性能。在力再平衡模式下,CDRG锁定最大位移时最佳性能:标度因子、零偏不稳定性和角度随机游走分别为98.1 m V/(°/s)、0.004°/√h和0.187°/h。与RDRG相比,其性能指标分别提高了112%、700%和314%。这些均表明MEMS类蛛网状盘式谐振陀螺具有实现高精度陀螺巨大潜力。