论文部分内容阅读
近年来,变分不等式理论已成为研究大量纯粹数学和应用科学领域中非线性问题的有效工具,如数学规划,最优化,力学,弹性理论,运输,经济平衡,渗流介质以及数学与工程科学许多别的分支。由于自身的发展和应用到别的学科,利用各种新颖的技巧,变分不等式已朝不同方向被推广。本文分别在Hilbert空间、Banach空间框架下,研究了变分不等式(组)(包含(组))的解的存在性和迭代算法的收敛性。具体内容如下:
1.简要叙述了变分不等式理论研究的历史背景。
2.回顾了文中将要用到的一些基本概念和理论。
3.在自反Banach空间中引入和研究了一类新的完全广义拟似变分包含,利用Jη邻近映射给出了此类变分包含近似解的迭代算法,并证明所构造的迭代算法生成的迭代序列的收敛性。
4.用更弱的弱压缩映射来代替压缩映射,我们引入了分别由(4.1.1.1)和(4.2.1.1)定义的两类隐式粘性迭代序列{xt}和{zm},并证明了这两个序列都收敛于变分不等式(4.1.1.2)的唯一解。
5.在Hilbert空间中引入和研究了一类新的完全广义强非线性混合似变分不等式组,并证明了其辅助变分不等式问题解的存在唯一性。基于该辅助问题,我们构造了一个迭代算法,分析了由该算法产生的迭代序列的收敛性。
6.我们给出(H,η)-增生算子和广义(A,η)-增生算子定义,并引入和研究了含(H,η)-增生算子的集值变分包含组和含广义(A,η)-增生算子的集值非线性变分包含。利用与(H,η)-增生算子有关的和与广义(A,η)-增生算子有关的预解算子,构造了迭代算法并给出了由这两个算法生成的迭代序列的收敛性。