【摘 要】
:
网络流量海量化、复杂化已成为常态,如何识别、监测、分析网络流量已成为重要研究方向和热点。特别是基于深度学习的异常检测方法的研究,受到产学研界广泛关注,异常检测与机器学习、深度学习等人工智能技术领域相结合是网络安全领域研究的一个重要分支。作为检测高级威胁手段的流量分析技术结合人工智能、大数据等技术对流量建模,分析流量行为,识别检测异常流量,为网络规划、网络优化、网络监控等提供重要的技术支撑。本论文的
论文部分内容阅读
网络流量海量化、复杂化已成为常态,如何识别、监测、分析网络流量已成为重要研究方向和热点。特别是基于深度学习的异常检测方法的研究,受到产学研界广泛关注,异常检测与机器学习、深度学习等人工智能技术领域相结合是网络安全领域研究的一个重要分支。作为检测高级威胁手段的流量分析技术结合人工智能、大数据等技术对流量建模,分析流量行为,识别检测异常流量,为网络规划、网络优化、网络监控等提供重要的技术支撑。本论文的研究内容是将传统的统计方法、深度学习及强化学习的方法用于网络流量建模和异常检测,流量模型是基于流量的异常检测的基础性研究工作,掌握流量特征是建设健壮、安全可靠网络的前提条件。可在流量模型上开展流量预测、分类,以及在此基础上进行异常检测研究。本文主要研究内容和贡献包括:(1)研究了移动平均自回归模型在以流量为代表的时间序列建模领域的应用,总结了一套建模流程,可用于指导模型设计、指标选择及模型评估;提出了一个ARIMA+SVR的混合模型,时间序列的预测准确度提高了10%以上。设计了一个加密视频流识别方案,提出了视频流最近邻、动态时间规整算法;基于加密后流量不确定性增加、熵值加大的特点,结合分类算法提出了一个加密流量识别方法,该方法与传统方法相比,识别准确率提高了10%以上。(2)在分析和实验长短期记忆网络性能存在的问题后,提出了基于注意力机制和自编解码融合的流量模型,训练时间与现有的模型相比缩短了约80%左右,在流量模型的基础上设计了异常评分机制,提出了基于注意力的异常检测模型,实验结果表明异常检测准确率达到或超过现有模型,模型训练时间效率提升明显。(3)通过将生成式对抗神经网络(GAN)应用于流量建模和异常检测的研究,提出了基于GAN的流量模型,该模型克服了GAN训练易出现不稳定等问题,生成了“高仿真度”的网络流量,在此基础上进一步设计了异常评分机制,进行流量异常检测。实验测试表明模型的有效性,其识别准确率达到或超过现有模型。(4)通过对异步强化学习(A3C)应用于网络流量的研究,提出了一个对网络攻击行为建模的异常检测模型,对四个基准数据集的实验测试表明,检测准确率、召回率及F1分数等评价指标达到或超过现有的模型。
其他文献
随着未来移动通信需求的发展、高速率通信场景的增加,以及低频段资源的短缺,毫米波通信技术,由于其具有更多的频谱资源,更大通信带宽,并且能够有效的利用空间域的资源,越来越受到学术界和工业界的重视。因此,毫米波通信技术也成为了5G通信的重要技术之一。本论文从毫米波通信中实际存在的问题出发,首先研究了毫米波通信的信道特性、通过实际测量和大量经典文献的整理,基于前期研究的毫米波信道特性成果,使用不同的毫米波
无线网络技术正迈向与多领域的深度融合,逐步实现无时无处的智能连接、全息连接、深度连接与泛在连接。然而,由于无线网络的广播性及开放性,使得无线网络极易受到窃听以及干扰等恶意攻击。同时,微型无线终端设备的普及,使得这些微型终端的计算和能量都非常有限,基于传统的安全解决方案难以适用于无线网络的低功耗、低计算资源以及高吞吐率下的高安全需求。无线物理层安全技术的提出为解决这些安全问题提供了新的思路。物理层安
近年来人类社会所产生的海量数据使得人工智能技术为制造业产能升级提供了强有力的支持。但与此同时,传统计算机的计算能力与存储性能也逐渐步入瓶颈,核心处理器的电路集成度越来越大,且因不可控制的量子效应导致计算失效。为了克服传统计算机目前的缺陷,在存储和计算等关键领域上重新思考并发明全新的颠覆性技术成为计算机研究领域的热点研究课题。近年来,利用量子力学规律所设计的量子计算机相比经典计算机具有更强大的存储与
近年来,大规模云计算系统不断成为大数据、物联网、人工智能等应用的重要支撑平台,随着其规模和复杂性的急剧增加,各种硬件和软件故障质变为常态现象,多类型的故障需要及时发现和修复。同时,复杂性不断增加的云计算系统架构对可靠性带来的影响不断凸显(如评估困难、运维低效等),并受到学术界和产业界的广泛关注。如何量化复杂的云计算系统可靠性特征并加以保障和有效提升已经成为了制约云计算产业持续发展的关键问题。在现有
光学相干层析成像技术因具有高分辨,非入侵和实时成像的特点,被广泛应用于各种基础研究和临床医学中。但光在通过无序的生物组织时,由于折射率不均匀而发生的多次散射,限制了OCT的成像深度为1~2 mm。近些年来,随着使用空间光调制器优化入射光的波前、样品反射/传输矩阵测量和时间反演等技术的出现,人们提出了很多新型的穿透散射介质成像和聚焦的技术,这其中就包括反馈式的波前整形、光学反射/传输矩阵的测量、光学
与常规相控阵(Phased Array,PA)仅有方位角依赖性的发射波束不同,频控阵(Frequency Diverse Array,FDA)雷达通过对各阵元载频依次施加不同的频率偏移形成具有方位角、距离甚至时间依赖特性的发射波束。因此,频控阵雷达在发射波束形成、杂波和干扰抑制、目标检测与跟踪、参数估计和射频隐身等领域具有广泛的应用前景。本文从频控阵雷达阵列结构和信号的基本特性出发,对其目标检测涉
传统电信网络由一系列的专有物理设备组成,网络服务所需的网络功能都是专有设备。这样的网络使提供网络服务的周期长、服务敏捷性低,并且严重依赖于专用硬件。这些缺点使在传统网络中提供敏捷的、多样的服务变得极其困难。网络功能虚拟化(Network Function Virtualization,NFV)被提出来以解决这些问题。NFV使用虚拟化技术,将基于硬件的网络功能实现为基于软件的虚拟网络功能(Virtu
工业4.0与5G技术使得大量智能物联网终端加入到网络中,在提升网络便捷性与多样性的同时也带来了诸多安全风险。接入认证是保证网络安全的第一道防线,然而由于智能终端多为小型化、低功耗,难以支持传统的基于密码的安全技术对计算复杂度与存储容量的需求。基于物理特征的认证方法因其轻量化、负担集中于认证侧等特点,非常适用于近距离且拥有大量物联网终端的边缘计算场景。但基于物理特征的认证由于其利用设备或信道的物理特
在肺癌的早期临床影像筛查中,CT影像中肺结节的检测对肺癌诊断极为重要,可以提高肺癌患者的生存几率。由于CT影像的数据量庞大,会给医生带来负担与疲劳,从而导致病症的漏检和误检。因此,临床上急需一种辅助医生进行病症检测的计算机辅助检测(computer-aided detection,CAD)系统,以提高医生的病症检测率。然而,肺结节具有异质性的特性,并且肺腔内存在大量与结节相似的组织。这些因素给肺结