论文部分内容阅读
含能材料是国防工业以及航空航天技术不可或缺的重要材料,对其加工方式的研究也一直是各国研究的热点。螺压成型工艺是含能材料成型加工的重要方式,包括物料混同、驱水、压延塑化造粒与螺压成型等几个过程。随着对含能材料的深入研究,高能含能材料已得到较快的发展,而传统螺压机的结构和工艺无法适应含能材料发展的更高要求,在此背景下开展含能材料的螺压安全加工过程模拟仿真研究,以理论指导螺压机结构的正确设计,同时对螺压机内物料温度、成型压力以及物料剪切等关键参数严格控制,以实现药柱的连续稳定生产,具有重要的理论意义和工业应用价值。本论文首先基于沟槽单螺杆挤出塑料成型的理论,建立了含能材料全沟槽单螺杆成型过程的物理模型和数学模型。基于真实改性双基推进剂的物性参数,首次使用Virtual Extrusion Laboratory软件(简称VEL)对单螺杆压伸过程的全螺杆工作段和模具成型进行模拟,得到各项参数沿挤出方向的变化情况,从而为安全压伸工艺过程提供参考。并使用POLYFLOW软件对螺杆均化段和成型模具段进行模拟分析,从整体分布趋势及具体数值上对VEL的结果进行验证和进一步补充。主要研究工作如下:(1)建立含能材料全程直沟槽单螺杆成型过程的三段式理论模型,确定正位移输送的边界条件为固体塞在固体输送段中不被剪断,为沟槽机筒和螺杆的设计优化提供理论支持;(2)利用VEL的挤出机模块和POLYFLOW软件分析真实双基药的单螺杆压伸成型过程的全螺杆工作段,结果显示:螺压过程中压力峰值出现在压缩段末端的螺棱推进侧,而螺棱拖曳侧流道中部的温度最大,主要由剪切生热引起,因此压伸过程中需关注剪切情况以避免过热;(3)使用VEL软件探究加工工艺和螺杆结构对螺压过程的影响,结果表明:螺杆温度、螺杆转速和螺杆压缩比对安全压伸过程有着较大的影响。料温随螺杆温度升高而增大,而压力下降。螺杆转速增大会引起较大的温升,易造成危险,故不宜提高螺杆转速。压缩比增大对建压过程有利且不易引起温升,故可在安全压力范围内适当增大压缩比;(4)使用3D-FEM模块和POLYFLOW软件对料条模具成型流道模拟分析,结果表明成型压力自模具入口处逐渐降低,而剪切热引起的温升较小。并通过3D-FEM模块模拟分析了模具温度和模具收缩角对成型过程的影响,结果表明模具温度和收缩角增大均会使压力降低,不利于物料的压实和黏合,因此模具温度应尽可能低些,收缩角也不宜过大。