论文部分内容阅读
在自然界中,很多现象都可以用数学模型来描述,如用于研究种群增长的Logistic模型、描述捕食者与被捕食者生长情形的捕食-食饵模型、研究传染病传播规律的SIR模型等。同时这些数学模型还可以探讨物理、化学、生物等各学科中的各种系统并取得了广泛应用,其研究的内容和方法是多种多样的。借助数学模型这一工具,我们能够有效地刻画和描述现实世界中很多事物的发展规律,进而对生产和实践进行理论的指导,其研究结果具有重要的理论和实际意义。本论文研究了几类具有实际背景的捕食-食饵模型的稳定性和Hopf分支。首先考虑了一类具时滞的Holling III型的捕食-食饵模型,由特征根分析法来判别正平衡点的局部稳定性;借助Hopf分支定理、中心流形定理和规范型理论来判别Hopf分支的性质;最后借助数学软件Matlab来验证所得结论。其次考察了一类带herd行为的捕食-食饵模型,通过选取适当的参数给出了正平衡点的稳定性;并分别以所选的参数和时滞作为分支参数,用Hopf分支定理,中心流形定理以及规范型理论来判别Hopf分支的性质;最后借助数学软件Matlab来验证所得结论。最后讨论了一类具有食饵捕获项的捕食-食饵模型,通过分析特征方程,分别得到了正平衡点的稳定性和分支周期解的存在性和稳定性;应用迭代技巧,得出了扩散模型的唯一正常数平衡态的全局渐近稳定性;最后借助数学软件Matlab来验证所得结论。