硅微陀螺噪声及标度因数非线性分析与优化技术研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:wylalone
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着MEMS技术的发展,硅微机械陀螺仪的研究得到了快速的发展,并迅速在军事和民用领域有了广泛的应用。本文主要以课题组自研的双质量硅微机械陀螺仪为研究对象,对陀螺仪的噪声性能和标度因数非线性度指标进行了较为深入的分析和研究,本文的主要研究内容如下:(1)驱动回路噪声模型分析。首先,详细介绍了驱动回路测控系统的工作原理,具体分析了各个环节的作用;然后,指出了驱动回路中存在的噪声类型,并建立了驱动回路的噪声模型;接着,使用功率谱密度函数对噪声模型进行了分析,研究了驱动噪声对检测通道的影响。分析表明,在存在输入角速度的情况下,叠加在驱动幅值上的噪声会通过哥氏力影响到检测通道的输出,并推导出了该噪声的功率谱密度表达式。(2)检测回路噪声模型分析。首先,介绍了检测回路的两种工作模式,开环模式和闭环力反馈模式;然后,使用驱动幅值噪声和检测回路固有的噪声源建立了检测回路的噪声模型,使用功率谱密度函数完成了对两种工作模式下噪声传递的分析,推导出了各自输出噪声的功率谱密度;最后,通过功率谱密度计算出相应的角度随机游走,明确了不同噪声源对输出噪声的贡献情况,提出了降低噪声的技术途径。(3)标度因数非线性度误差机理分析。首先,推导了陀螺仪开环和闭环工作模式下的标度因数表达式;然后,根据表达式中的参数逐一分析了其对标度因数非线性的影响,并使用标度因数偏差度指标来反映该影响的大小。计算与仿真结果显示,在开环模式下,由位移-电容转换环节和电容-电压转换环节引入的非线性是导致最终标度因数非线性度的主要因素;在闭环模式下,由原理引入的非线性度很小,但力反馈电压生成电路的非线性限制了陀螺的闭环标度非线性性能;最后,设计了一种基于陀螺测控电路的标度因数非线性度补偿算法,该算法不依赖陀螺输出的重复性且具有良好的补偿效果。(4)硅微机械陀螺仪性能测试。参照了国产微机械陀螺仪测试细则,对陀螺仪的噪声性能和标度因数非线性度指标进行了实验测试,实验结果显示,陀螺仪的噪声性能和标度因数非线性度与本文的理论分析结果相一致,实验验证了本文提出的标度因数补偿算法的有效性。
其他文献
随着用户设备(User Equipment,UE)和移动流量的迅猛增长,无线通信网络面临越来越大的流量压力。在雾无线接入网络(Fog Radio Access Networks,F-RANs)中,由于雾接入点(Fog Access Point,F-AP)具备边缘缓存和边缘计算的能力,因此部分UE的请求可以在本地F-AP中处理。UE不再需要通过远程服务器获取文件,大大降低了服务的时延和前传链路功耗。
随着物联网技术的不断发展,基于物联网技术的系统被越来越多地应用到了智慧消防领域中。而其中,新兴的窄带物联网(Narrow Band Internet of Things,NB-IoT)技术因其覆盖范围广、容量大、成本低等优势,而备受青睐。传统的智慧消防系统中,大多通过传输传感器的参数并以此进行判别,有着精度低、时效性差等问题,而有的系统则将视频图像通过网络传输到后台进行统一的处理、判别,则有着传输
动态心电(Electrocardiogram,ECG)连续监测是实现心血管疾病早期检测的有效手段,心率(Heart Rate,HR)是心电信号中反映人体心脏搏动状况的重要生理指标,更是心血管疾病评估和诊断的重要基础。然而,动态心电信号中存在大量噪声,心率标注算法易受到信号噪声、个体差异等因素的影响,这使得动态心率估计的可靠性大大降低,造成心率的错误估计,从而影响病人的治疗时机或引起监护人员的警报疲
学位
人和机器人共融的核心是自然人机交互。基于运动想象脑电、稳态视觉诱发电位及事件相关电位的智能假肢、外骨骼机器人和康复机器人等BCI系统在残障人士的生活辅助和运动功能康复等方面取得了一定的研究成果,然而,这些技术仍存在脑机交互不自然的问题,如利用脚部的运动想象来控制神经假肢的功能。实现自然且直观的脑机接口控制可促进用户和BCI系统的共同演化过程,使得用户积极参与并改善康复效果。基于脑电的自然动作解码为
随着移动互联和数字图像处理技术的不断发展,获得数字图像的成本不断降低,同时先进的图像处理工具使得对图像进行操作变得易如反掌。图像操纵可以轻易地实现诸如对象复制、拼接以及删除的操作,被恶意利用产生的篡改图像则可能给社会带来负面影响,误导大众。由于在视觉上可能无法分辨被操纵的区域,如何防范这些篡改图像则是一项艰巨的任务。现阶段已经有了很多针对图像篡改的检测算法,但这些方法大多需要手工特征提取,往往使用
智能通信作为未来通信技术发展的主流研究方向之一,在5G(5th Generation Mobile Communication Systems)加速普及的当下,具有重要的研究价值。智能通信引入人工智能(Artificial Intelligence,AI)技术解决通信难题,例如在物理层的信道估计、信号检测与信道译码等研究问题中,AI辅助的算法设计能够达到甚至超越传统算法性能,展示出巨大研究价值。智
随着物联网技术的蓬勃发展,大量智能终端的应用对未来的无线通信系统提出了支持海量设备同时可靠接入的需求。免调度无线接入系统中,用户终端可以自发向基站发送数据,不需要向基站发起调度请求,从而减少信令开销,降低传输延时和智能设备功耗。这些优势使免调度无线接入技术成为了大规模机器类型通信(massive Machine Type Communications,m MTC)场景下的关键技术之一。然而,由于基
语音增强作为语音信号处理的一个重要分支,在语音通信、听觉辅助、自动语音识别(Automatic Speech Recognition,ASR)系统前端等领域都有重要的应用。早期提出的一些传统单通道语音增强方法,虽然计算简单,但是降噪效果不佳,尤其是对非平稳噪声。近些年兴起的深度学习算法大大提升了单通道语音增强的性能水平。然而,基于深度学习的语音增强模型往往难以有效地泛化到现实场景中。此外,在移动或
激光雷达采集获取的点云数据凭借其准确的深度信息和稳定的存储结构能够有效反映几何模型的形状结构以及雷达周围环境的障碍物信息,因此点云数据处理技术近年来在三维模型分析以及移动机器人导航控制领域得到迅速发展。由于传统分析点云数据的方法往往会选择点云重建或者内部采样的方法,而重建与采样的过程往往繁琐且计算资源消耗大,这就可能导致各类应用工作效率低下。受启发于点云可见性判断的方法,本文引入了可见单元的概念,