论文部分内容阅读
随着互联网技术与电子商务的不断发展,人们的生活方式产生了巨大的改变,可以足不出户就能获取大量的商品信息,但如此庞大的商品数据量使得用户难于从中快速寻找到适合自己的商品信息,反而使信息使用效率降低了。面对用户希望快速获取有效商品信息的需求,业界普遍采用电子商务推荐系统的方式予以满足。电商推荐系统能够根据用户历史行为数据扮演“导购”角色,为用户提出符合用户偏好的个性化建议,推荐符合用户购买意愿的商品,帮助用户更好地做出购物选择,从而提升用户对电商网站的满意度与忠诚度。目前的电商推荐系统在理论与实践方面皆获得了很大发展,也能够根据用户行为个性化地推荐出一些商品。但目前的电商推荐系统的研究中,普遍缺乏对目前频繁的大型的商业化特惠活动的考虑,如双十一大促时,日常的商品推荐会因商品的有限条件下的用户抢购而失效。对此本文的主要研究点包括:(1)从用户偏好模型的角度出发,通过对用户偏好的属性的分析给出了规范的用户偏好表示方法,通过分析用户在电商网站上的行为流程与描述给出了统一的行为表示方法。以基于内容推荐思想为基础,通过对用户行为的分析,研究了用户对各商品属性的偏好度的计算方式,从而给出了基于内容的用户偏好模型的建模算法。(2)针对目前商业化的大型特惠活动,研究了电商有限资源的概念,并给出了统一的表示方法。针对电商有限资源,以基于用户的时间感知协同过滤算法为基础,改进了用户偏好预测公式,研究了基于有限资源的协同过滤算法,并结合分析出的用户偏好模型对推荐结果进行校正,以提高推荐结果的准确性。在上述方面的研究基础上,本文设计并实现了包括用户偏好模型和基于电商有限资源推荐两个模块的电商个性化推荐原型系统,能够合理地分析用户偏好模型,并基于有限资源有效地推荐商品,对解决频繁的大型的商业化特惠活动的推荐问题有积极意义。