论文部分内容阅读
激振器是一种能够迫使物体或自身产生振动的设备。在现有的激振方式中,电液激振技术具有功率密度高、推力大、负载自适应等优点,被广泛应用于岩石破碎、道路桥梁及航空航天等领域。本文设计的阀芯回转式电液伺服阀,与传统的伺服阀相比具有结构简单、价格低廉及可获得更高的频率等优点。本研究采用理论分析、数值仿真分析和实验研究相结合的方法完成了以下工作:以一种新型阀芯回转式电液伺服阀为研究对象,基于CFD建立了转阀的流场模型,并对转阀工作过程进行了可视化仿真分析;研究了转阀的静动态特性及阀芯回转式电液激振器的工作特性,并开展了初步的实验探索,为后续阀芯回转式电液伺服阀的结构及性能优化提供理论依据。论文主要研究结果如下:(1)根据液压激振系统动力学模型,得到影响液压激振系统的主要控制参数,并以振动破碎所需的大功率重载低频电液激振为基础,设计了一种阀芯回转式电液伺服阀。(2)采用Fluent对阀芯回转式电液伺服阀的内部流场进行建模及可视化仿真分析,得到不同阀芯转速和不同供油压力下转阀的压力、速度和液动力的分布特性,并从多相流的角度研究阀口气穴现象产生的条件及区域变化规律。(3)通过对转阀的静、动态特性研究发现,转阀的流量与阀口开度和供油压力呈现非线性正相关趋势。在转阀工作时,增大阻尼比和降低转动惯量可以提高转阀的响应特性。(4)从阀控缸的角度出发,利用Matlab/Simulink和AMESim对阀芯回转式电液激振器的数学模型进行求解,结果表明:激振位移随着工作频率和负载质量的增加呈现相应的减小,随着供油压力的升高呈现增大趋势,各工作参数的合理匹配可以获得最佳的工作特性。(5)通过开展阀芯回转式电液伺服阀的静、动态特性实验,并对比实验结果与理论结果,表明理论模型和仿真模型具有较好的可靠性。通过以上研究表明,本文研究成果将对转阀式液压激振技术的发展有一定的科研价值和现实意义。