论文部分内容阅读
盒维数是刻画分形图形粗糙程度的重要参数,而变差可以描述函数图象在不同尺度下的粗糙程度,本文运用变差研究了分形插值曲面的盒维数.为了得到矩形区域上一般的二元递归分形插值函数(RFIF)变差的性质,考虑运用关联矩阵来处理RFIF中复杂的映射关系,从而给出其变差估计.结合特征值与特征向量的关系,通过递推关系进一步得到了二元递归分形插值函数变差阶的估计.然后根据连续函数的变差与图象的盒维数之间的关系,得到了一般形式的递归分形插值曲面(RFIS)的盒维数定理.最后,给出RFIS盒维数计算的实例以及图象模拟. 本文共分为五章.第一章简要分析了本文研究的背景、国内外发展现状,并扼要地阐述了本文研究的主要内容和创新点. 第二章回顾了分形理论的基础知识,首先介绍了关于盒维数的概念,然后回顾了迭代函数系(IFS)、分形插值函数(FIF)的定义和维数的相关知识,最后简要说明更一般的递归迭代函数系(RIFS)、一元RFIF的定义和维数定理. 第三章主要介绍了一元、二元连续函数变差的相关性质.首先给出振幅、变差的概念及其性质,在FIF和一元RFIF变差性质的基础上,通过引入关联矩阵,证明了二元RFIF变差的性质,并给出变差估计. 第四章首先介绍非负矩阵、有向图、强连通分支等预备知识,并给出了分形几何维数计算中广泛应用的Perron-Frobenius定理.接下来在引入关联矩阵的条件下,得到了二元RFIF变差阶的估计.然后根据连续函数的变差与函数图象的盒维数关系,给出了RFIS的盒维数计算公式并进行了严格的证明,最后在实例中应用维数公式计算了矩形区域上RFIS的盒维数并给出该函数的模拟图象. 第五章是总结与展望.首先总结本文研究的主要内容,并结合研究内容对本课题的进一步研究提出一些展望.