论文部分内容阅读
量子阱半导体激光器是一种极有发展前途的激光器,具有量子效应高、温度特性好、阈值电流密度低、输出功率大、寿命长等优点,广泛应用于工业、通信、国防军事、医疗保健等领域,成为光电子材料与器件领域国内外研究的重点。要获得长波长半导体激光器外延材料,则需要获得高质量的大应变InGaAs/GaAs量子阱材料。但是,高应变量子阱激光器要求有源区InGaAs含有较高的In组分,与衬底GaAs的失配较大,同时由于材料应变的累积,获得高质量的外延材料十分困难。本文在对半导体激光器波导结构理论分析的基础上,进一步探讨了高功率半导体激光器的结构参数和输出性能的关系,从半导体激光器结构设计、外延生长以及器件特性等方面,讨论了提高高应变半导体激光器输出特性的途径。主要的研究内容和成果如下:(1)采用数值仿真技术研究了高应变InGaAs量子阱结构对器件性能的影响,详细分析了带有模式扩展层量子阱激光器的中心波导层、扩展波导层和内限制层对激光器性能的影响。从理论上分析了模式扩展层对激光器阈值电流密度、限制因子、垂直发散角的影响。提出了采用宽波导、非对称波导结构降低激光器波导光损耗的方法,以及应用渐变异质结界面改善异质结势垒电压降的途径。通过势垒结构的设计与载流子限制特性表征方法,优化了器件量子阱势垒结构、腔长和台面宽度。研究表明,带有模式扩展层的半导体激光器外延结构,使近场光场得到展宽,减小了光学限制因子,使半导体激光器的COD阈值得到提高。设计了高1.5μm、宽50μm的非对称、宽波导的结构的应变量子阱激光器,仿真表明,激光器阈值电流为118.94 mA时,远场垂直发散角为22o;阈值电流为204.9 mA时,远场垂直发散为17o。根据模拟仿真的结果以及理论计算,确定了量子阱激光器的整体外延结构。(2)通过实验方法研究了影响量子阱发光特性的关键因素,包括衬底偏向角、生长温度、生长速率以及V/III比等,以及他们的作用机理。通过改变量子阱的制备条件和参数,制备了多种量子阱激光器。通过原子力显微镜(Atomic Force Microscope,简称AFM)表面形貌检测、X射线衍射检测和光致发光(Photoluminescence Spectroscopy,简称PL谱)光谱检测等多种手段,比较不同因素对其光学性能的影响。结果显示,衬底偏向角是影响量子阱的关键因素,衬底偏向角较小会导致光致发光强度显著增加,半峰宽明显降低,从而提高材料的光学性能。另一方面,通过降低生长温度抑制In,光致发光强度显著增加,半峰宽减小,进而改变In的组成和阱层的厚度,导致波长红移,提高量子阱的光学性能。除此以外,生长速率和V/III比也是影响发光特性的重要因素,通过提高生长速率可以有效提高量子阱的质量,提高V/III比可以改善InGaAs/GaAs量子阱的发光特性。最终,获得了波长为1290 nm的InGaAs量子阱激光器结构。(3)详细研究和分析了量子阱激光器的钝化与解理技术,应用X射线光电子能谱分析(X-ray Photoelectron Spectroscopy,简称XPS)技术分析半导体激光器真空解理与钝化技术的关键影响因素,并采用半导体激光器腔面膜技术,解决半导体激光器的端面损伤退化的问题,实现半导体激光器更长的寿命以及更高的功率。对本文所设计的InGaAs量子阱激光器的进行了制备,得到了阈值电流约为482 mA,斜率效率为0.45 W/A,在连续电流为1.5 A时,激光器的峰值波长为1295 nm的量子阱激光器,与所设计的量子阱激光器相符合,达到了预期的效果。