【摘 要】
:
在恶劣天气下,图像采集设备受到大气悬浮粒子(例如:雾、霾和小液滴等)的影响,导致图像产生颜色失真、对比度降低以及细节丢失等问题,不仅影响图像视觉效果,还会影响计算机视觉系统的分析与处理。因此,如何设计高质量的图像去雾算法成为亟待解决的问题。 本文介绍了图像去雾算法的研究背景和现状,讨论了大气散射模型、深度学习和生成对抗网络相关理论,以生成对抗网络为基础提出了两种图像去雾算法。具体工作包括: 首
论文部分内容阅读
在恶劣天气下,图像采集设备受到大气悬浮粒子(例如:雾、霾和小液滴等)的影响,导致图像产生颜色失真、对比度降低以及细节丢失等问题,不仅影响图像视觉效果,还会影响计算机视觉系统的分析与处理。因此,如何设计高质量的图像去雾算法成为亟待解决的问题。
本文介绍了图像去雾算法的研究背景和现状,讨论了大气散射模型、深度学习和生成对抗网络相关理论,以生成对抗网络为基础提出了两种图像去雾算法。具体工作包括:
首先,本文提出了一种基于特征选择和对抗学习的图像去雾算法。该算法设计的双模块结构生成器负责估计图像传输率和去雾图,两个模块的组合可以等效成一个特征选择系统,自适应地选择有益于去雾的特征。本算法设计的多尺度鉴别器从多个尺度检测残余雾和伪影,有效地提高生成器的性能。此外,该算法提出一种提高去雾图像目标识别精度的训练方法,使去雾网络最大限度地适应目标识别系统,提高去雾图的识别精度。
其次,本文设计了一种基于多尺度残差网络和对抗学习的图像去雾算法。该算法设计的生成器负责从有雾图恢复无雾图,设计多尺度残差模块将不同尺度特征图和卷积核进行组合,实现多种尺度的雾霾特征提取,利用压缩奖惩模块将对去雾有价值的特征进行自适应校准。该算法提出的宏观和微观鉴别器从整体和局部检测残余雾和伪影等,有效地提高了去雾图的视觉质量。
综上所述,本文提出的两种图像去雾算法直接从单张有雾图恢复无雾图,不采用物理模型,克服了传统基于模型算法的不精确。本文采用RESIDE(REalistic Single Image DEhazing)数据集进行对比实验,通过对合成图像和真实图像结果的定量和定性分析可知,本文算法去雾效果自然、稳定性更强,性能明显优于对比算法。
其他文献
随着计算机视觉技术的发展,三维模型在该方向的应用越来越广泛。由于三维模型的数量急剧增加,快速实现对三维模型的分类和检索是面临的一个较为棘手的问题。三维模型的表征方法有很多种,其中基于视图的图像表征方法在该领域方面有着很好的表现能力,在多个数据库和比赛中取得良好的成绩。 本文依据图像表征三维模型的方法,介绍基于全景图的三维模型表征方法,主要介绍:(1)提取三维模型的全景图表示三维模型,将网格化的三
物体检测是计算机视觉领域的基础问题之一,在自动驾驶、安全监控等领域有着广泛的应用。当前物体检测主要有两个发展方向,一是通过部署深度网络来实现检测精度的提升,不能保证实时的检测速度;二是通过设计轻量级网络提升检测速度,但检测精度相对较低。目前来看,单阶段物体检测器的检测速度尚可满足实时性的需求,但检测精度低是其相比于双阶段物体检测器的一个缺陷。与此同时,对于自动驾驶、安全监控等领域来说,视觉感知系统
数字多媒体时代的今天,各种立体图像或视频产品丰富着我们的生活,给我们带来身临其境的立体感。然而在立体图像处理过程中,创建、压缩、传输、重建、渲染和显示这些步骤都难免在原始图像上引入各种失真,导致立体图像或视频质量的下降。质量评价算法能够对立体图像或视频产品的质量进行评估。因此,建立一个准确有效的立体图像质量评价模型在数字多媒体时代显得至关重要。 本文首先提出了一种基于立体显著性的无参考立体图像质
空间谱估计作为阵列信号处理的一个重要分支,其目的是确定空间中入射源信号的来向。经典的DOA估计算法大都基于精准阵列流型,而没有考虑实际应用中不可忽略的互耦效应等因素,导致其实测性能大幅降低。因此,研究互耦情况下的测向算法具有重要的实用价值。此外,由入射源信号的统计特性,可将其分为圆信号和非圆信号。目前大多数算法默认入射源信号是圆信号,只利用其协方差非零的特点完成测向操作,导致可探测最大入射源数目少
随着5G新无线电接入技术(New Radio Access, NR)的不断发展,人们对大容量、低延时、高可靠、高速度、低功耗通信的需求更加迫切。在数字通信系统中,信道编码是5GNR的关键技术之一,而海量的信息数据传输对5G信道编码提出了更高的要求。低密度奇偶校验(Low Density Parity Check, LDPC)码作为5GNR的信道编码中数据信道的长短编码方案,将继续发挥不可或缺的作用
火灾早期,通常先有烟雾产生,随后才是火焰,因此烟雾检测能够提供比火焰更为及时的报警线索,对于确保人民群众的生命以及财产安全、推进火灾预防领域的发展意义重大。传统的烟雾检测方法通过监测空气中烟雾颗粒产生的物理变化来进行烟雾报警,比如温度、浓度等。但此类方法在时间和空间上均受到限制,从时间来说,烟雾浓度需达到一定范围才可以被传感器感知,这很可能导致最佳救援时机的错失;从空间上来说,一些开阔的室外环境也
随着互联网技术的发展,海量图像数据不断涌入,人们对从海量数据中检索有效信息的需求不断增长。同时,近年来随着手机、平板等触摸屏技术的发展,基于草图的图像检索(Sketch-based Image Retrieval, SBIR)成为一种较为直观和有效的图像检索方式。相比于其他基于内容的图像检索方式,草图作为查询输入可以更好地描述关键信息,且更为直观和简洁。因此,基于草图的图像检索引起了研究人员的广泛
目标检测是计算机视觉中的一个主要研究方向,并且有很多实际的应用,比如无人驾驶、智能医疗等。传统的目标检测算法主要基于手工提取的特征以及可训练的浅层结构。近些年来,随着深度学习技术的快速发展,越来越多的研究人员趋向于用深度学习的方法解决计算机视觉任务。由于深度学习能够提取出更深层次、更高语义级别、更加鲁棒的特征,基于深度学习的目标检测算法在该领域取得了突破性进展。但许多复杂的应用场景既对目标检测系统
随着显示器硬件制造水平的提高以及人们对显示器视觉质量需求的提升,数字显示器已经逐渐可以显示具有高比特深度的高动态范围内容,以提供更多、更细致的颜色表示,提高图像显示的视觉质量。然而,受限于图像采集设备,大多数图像视频以低比特深度形式存储。当这些低比特深度图像经过简单处理后直接在高比特深度显示器上显示时,图像的颜色平滑渐变区域会有明显的伪轮廓,降低了视觉质量。因此,研究合适的图像比特深度增强算法具有
近年来,3D处理技术的发展推进了立体视频的商业化进程。然而,任何3D处理技术都会造成立体视频的质量下降、立体感缺失等问题,从而影响人类的观看体验。因此,如何根据立体视频的特点,构建更加符合人类视觉感知的立体视频质量评价模型,已成为计算机视觉研究领域的关键问题之一。目前,立体视频质量的评价方法主要包括基于特征提取的方法、基于稀疏表示的方法和基于深度学习的方法。卷积神经网络作为深度学习的重要技术理论,