【摘 要】
:
在牧场中,对于奶牛的运动状态以及健康状况的分析很重要,所以本文结合低功耗广域网(Low Power Wide Area Network,LPWAN)技术,使用LoRa组网搭建奶牛活动量数据采集系统。针对LoRa WAN协议缺乏防碰撞机制的不足,本文在经典轮询协议的基础上结合P-坚持型CSMA机制和频分复用的思想,提出一种基于多信道通信的具有自适应信道速率规划和差异服务机制的SPDS-TDMA(TD
论文部分内容阅读
在牧场中,对于奶牛的运动状态以及健康状况的分析很重要,所以本文结合低功耗广域网(Low Power Wide Area Network,LPWAN)技术,使用LoRa组网搭建奶牛活动量数据采集系统。针对LoRa WAN协议缺乏防碰撞机制的不足,本文在经典轮询协议的基础上结合P-坚持型CSMA机制和频分复用的思想,提出一种基于多信道通信的具有自适应信道速率规划和差异服务机制的SPDS-TDMA(TDMA with self-adaption channel rate planning and differential service mechanism)时隙分配协议。在OPNET软件上的仿真结果表明,该协议在时延、丢包率等方面比LoRa WAN协议的网络性能更好。基于SPDS-TDMA协议,本文设计了奶牛活动量数据采集系统,并完成了相应的物联网系统的软硬件设计。该系统包括可以周期性采集活动量数据的智能项圈和负责实时中转数据到云服务器的LoRa网关,其中智能项圈通过一阶互补滤波算法输出俯仰角Pitch和X、Y轴的合加速度,统称为活动量数据。在牧场实地部署测试,实测LoRa网关接收信号的覆盖半径为1.9km,覆盖面积约为11.34km2,能够覆盖中小规模的牧场。对云服务器接收到的数据分析,总丢包率约为1.5%,证明了采集系统的通信完整性、通信时延等指标都满足预期要求,且能够优化多节点通信时的碰撞问题。本文还使用Lab View Signal Express配合USB-6251数据采集卡测量智能项圈的功耗,预计使用寿命3.95年,达到预期的寿命预期。
其他文献
聚类是机器学习领域处理数据的重要方法,在众多学术领域中被广泛地应用。例如,目标用户的群体划分、不同产品的价值组合、探测发现异常值等。在这些场景下的数据的密度通常都是不均匀的,因此在这样的数据集上进行的聚类,要求聚类算法适合非均匀密度数据集。但传统的聚类算法在非均匀密度数据集上的聚类效果并不理想,并且传统聚类算法对参数依赖严重。针对上述问题,论文提出了一种基于图像分割模型的密度聚类算法DCABISM
目前传统的视频分类方法是基于人工提取的特征,这种方法在早期任务中取得了较为优秀的性能,但传统方式非常依赖特征提取算法以及特定任务的知识,因此,目前已过渡到基于深度学习的方式。解决该问题的传统深度学习算法是基于双流卷积神经网络结构,将网络分为空间流与时序流,分别使用视频帧和密集光流输入网络,获得最终分类标签。但传统方式存在一定弊端,即以密集光流作为特征,该特征目前的提取算法计算量庞大,且极其耗时,无
在农业领域,随着信息科技的高速发展,传统的手工劳作方式逐渐被智能化作业所代替。农业机器人的引入既提高了劳动效率和作物产量,又带动了农业经济的发展。众所周知,导航系统是农业机器人进行田间劳作的关键,这对于精准化作业来说至关重要。因此,针对农业机器人的导航系统研究已经受到越来越多学者的重视。本文针对农业机器人采集的田间作物的视频数据,基于深度语义分割模型实现农业机器人的自主实时导航。首先,为了改善低分
毫米波大规模MIMO是未来移动通信最具潜力的研究方向之一。然而,由于大规模MIMO系统中配备多个昂贵的射频链路使得硬件的成本和复杂度大幅增加。天线选择技术通过优化策略选择部分高性能天线通信可以在保证系统性能的前提下简化硬件结构;同时混合波束成形技术利用低维数字波束成形与高维模拟波束成形,大大降低了射频链路数目的需求,与天线选择技术相结合可以进一步降低系统复杂度,提升信号传输质量。但是目前传统的面向
深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)已成为深度学习中用于数字图像内容分类的关键算法之一,这是因为DCNN可以从足够多的训练数据中学习到具有高度代表性的分层图像特征。但是,DCNN的计算复杂度要比经典算法的计算复杂度大很多,这造成了基于中央处理器(Central Processing Unit,CPU)或图形处理器(Graphics Pr
在过去几年里,深度学习一直是人工智能取得成功的基础,但是巨大的计算复杂度和庞大的存储需求使得它们在实时应用中部署成为一个巨大的挑战,特别是在资源有限的设备上。因此,如何利用压缩和加速技术将模型应用于实际场景中成为了一个研究热点。目前大多数的神经网络压缩方法可解释性较弱,本文选择了可解释方法沙普利值和注意力机制作为压缩依据,并基于卷积神经网络展开研究,主要完成了以下工作:首先基于卷积神经网络模型压缩
在农作物生产中,提高农作物的产量是当今研究中比较热门的课题,也是农作物科研项目里一个重要的研究方向。农作物的生长环境因子和它的产量有着密不可分的联系。因此,本文主要分析农作物的环境因子间以及自身的变化规律,同时研究其预测方法。首先,对本文需要对实验数据进行预处理,即剔除数据中的异常冗余值,得到一套完整且干净可靠的数据集。然后,对环境因子展开三个方面的研究工作:一是环境因子的相关性分析。以皮尔逊相关
卷积神经网络由于能够模拟生物视神经的行为而获得较高的精度,因此被广泛应用于图像识别领域。随着终端应用需求的急剧增加,早期基于CPU和GPU的神经网络计算平台,其体积大、功耗高等弊端越发明显。FPGA作为一种可编程逻辑器件,拥有丰富的可编程逻辑资源,具有功耗低、体积小、可重配置等优点,与卷积神经网络计算特点相匹配,可用于小型嵌入式系统。本文主要研究利用FPGA实现卷积神经网络的方法,主要内容包含卷积
卷积神经网络作为深度学习领域的杰出算法愈发受到研究人员的关注,其在图像分类、语音识别、目标检测及自然语言处理等领域都有着十分优异的表现。然而,卷积神经网络十分庞大的参数量和计算量给硬件平台带来不小的压力,FPGA凭借其高度并行化计算、可反复编程以及低功耗等优势成为硬件加速卷积神经网络的研究热门。本文完成了基于ZYNQ-XC7Z020平台对卷积神经网络的加速设计,ZYNQ芯片中集成了ARM处理器和F
近年来图像分割技术作为图像分析的重要环节被广泛的应用在安防、医学、农业等领域。传统分割技术存在依赖人工经验且无法实现全自动图像分割等缺点,随着深度学习的发展,基于神经网络的图像分割不仅在准确率上大幅度提高且可以实现全自动端到端分割。本文的研究基于草原上的物种识别课题项目,主要通过分割技术将待识别的植物主体从图像中分割出来,排除非目标区域的干扰为植物物种识别及植物生长状态分析提供基础。植物实际的生长