论文部分内容阅读
本文研究课题受国家科技攻关项目“电网谐波有源滤波系统的研究”[NO.2002BA218C]和湖南省电力局重点科技攻关项目“电网谐波治理工程应用的研究”(湘电公司科[2001]772号)资金的支持。本文以某冶炼厂110KV变电站10KV馈电网的谐波治理为研究对象,旨在研究中压、中等容量电网的谐波治理控制策略和工程应用技术,为有源电力滤波器(APF)在国内的早日普及应用奠定理论和技术基础,为高压、大功率APF的应用投石问路、积累经验。本文研究成果被列为国家重点新产品计划项目[2003ED770013]。 首先,本文简要介绍了基于瞬时功率理论的谐波电流检测方法——i_p,i_q算法,并将之推广应用于单相系统、三相三线制系统和三相四线制系统中任意次数谐波的正序、负序有功、无功分量的检测,大大拓宽了该优良瞬时谐波检测算法的应用范围。 接着,本文研究了数字化APF系统中各部分和各过程存在的延时和惯性。APF系统中的延时常极误认为很小,其影响可以忽略,本文从理论分析和实验结果上均证明实事并非如此,延时对高次谐波的补偿的影响比较严重。鉴于此,本文引进基于LMS算法的自适应预测滤波器,提出了APF参考电流的自适应预测算法和优化预测策略,并导出了一种预测电网谐波的方法。本文针对传统LMS算法的缺陷,并结合电网电流的特点,提出了三点改进措施,这些改进都极大地提高了自适应预测算法的性能。本文提出的APF参考电流的自适应预测方法的最大优势是在保证较高的预测准确度和良好的动态跟踪性能的前提下,增加的计算量不大,且实现简单,不需额外地增加任何硬件。在APF参考电流自适应预测算法的具体实施中,本文采取了一些措施,巧妙地解决了电网频率变化、系统和环境中一些不确定性和随机因素对自适应预测算法的恶劣影响,从而拓宽了所提出的APF参考电流自适应预测算法的适用性,增强了鲁棒性,可为自适应预测算法的其它应用所借鉴。 然后,本文对APF和无源滤波器通过耦合变压器串联后再和电网并联的混合型拓扑结构(本文简称之为NPHAPF)进行了深入的研究,涵盖NPHAPF的工作机理、控制策略和系统的稳定性等。本文针对电网谐波电流的抑制,提出了匹种控制策略,并比较了各自的优缺点,中南大学博士学位论文摘要分析了各自的适用场合。然后考虑电网谐波电压对NpH即J的不良影响,本文提出了NPHApF的复合控制方式。采用本文提出的复合控制方式,NPHApF中的APF不但可以有效地改善整套滤波系统的谐波抑制效果,阻尼或抑制NPHAPF中无源滤波器电感、电容和系统电感之间可能发生的串并联谐振,还可以改善滤波器易受电网谐波电压影响的弊端。此外,采用本文提出的复合控制方式,也可以避免电网电感引起的谐波补偿电流的相位偏移,并能有助于进一步降低有源电力滤波器的容量要求。论文还详细分析了NPHAPF系统的稳定性,研究了延时和电流控制环比例系数K对系统稳定性的影响,并给出了在不同的系统延时下保证系统稳定的K的取值范围。还研究了电网参数和无源滤波器参数对K的稳定取值范围的影响。虽然在某种稳态条件下,固定K值可以取得良好的谐波抑制效果,但是一旦电网状况发生变化,仍固定K值,将不能取得始终如一的谐波抑制效果。针对上述问题,本文提出了K的在线自适应调整技术,即根据电网瞬时谐波状况,自动调整A卫F电流控制环比例系数K的大小,使得妙F不管是在轻微的谐波畸变情况下,还是在严重的谐波畸变情况下,都可以在谐波抑制效果和能耗双方面取得最佳的工作状态。 最后,本文研究了中等功率NPHAPF的工程应用技术,详细讨论了NPHAI叩主要元部件的参数设计,并充分考虑滤波器支路电流的瞬时变化对ApF直流侧电容冲放电的影响,提出了基于模糊比例控制器的直流侧电容电压的稳定控制方法,大大提高了电容电压的调整速度和调整的精细性。本文还简要介绍了本课题组研制的某冶炼厂混合有源电力滤波器工程应用系统数字化控制器的实现,它主要由两块电路板组成,其一是以TMS320 F240为核心的控制电路板,其二是以TMS32O C32为核心的信号处理电路板。文章的最后给出了该工程应用系统典型的实验数据和实验波形。