论文部分内容阅读
在智能机器人系统中视觉系统是一个重要的技术组成部分,它为智能机器人提供最丰富的位置参数和运动参数等信息,以方便智能机器人能够正确感知自身所处的工作环境,进一步对自身的行为做出正确的决策。视觉跟踪技术是视觉研究的一个重要分支,在智能机器人的科学研究、工程应用以及竞技娱乐等方面都发挥着重要的作用。它是一种通过图像处理的方法获取目标参数并对目标进行跟踪的视觉技术。 在对特定目标的视觉跟踪过程中提出一种基于运动目标颜色特征和形状特征的目标跟踪方法。该方法首先在图像全局范围内搜索与目标颜色特征匹配的区域,然后对这些区域采用不变矩特征匹配运动目标的形状,如果颜色和形状都匹配的目标总数大于总目标数,则采用预测模型筛选出运动目标所在的正确区域,并最终确定目标的位置。试验验证了该方法对具有固定形状和颜色的特定目标有良好的跟踪能力和全局跟踪特性。 针对彩色图像HSI颜色模型各分量所携带的颜色信息不同的特点,结合区域分割算法在彩色图像中提取区域颜色特征作为目标的颜色特征,它包含一维颜色特征值和区域灰度均值。一维颜色特征值具有较好的稳定性,不随光照强度改变而变化,反映目标内在的颜色特征;区域灰度均值是连通区域各像素灰度的平均值,它反映同一连通区域的亮度。试验数据显示,当区域灰度均值在一定范围内变化时,一维颜色特征值仍然具有较好的稳定性。 区域分割技术是区域颜色特征提取过程中必须采用的技术,提出一种结合梯度算子和子区合并技术的区域分割方法。该方法采用梯度算子对整幅图像进行梯度运算,并将运算结果二值化,然后采用子区合并技术连通具有相似性的相邻区域完成区域分割。通过梯度运算和二值化过程,在一定程度上消除了同一区域中颜色值变化对分割结果的影响,分割试验结果表明只要相邻像素的颜色值变化范围小于二值化阈值,这种分割方法就能够实现对图像的有效分割。