【摘 要】
:
建筑保温材料的使用是降低建筑能耗的有效手段之一,多孔保温陶瓷凭借其优异的不燃、耐久和良好的保温性能在近年来得到了广泛应用。矿物是制造建筑材料的常用原料,利用尾矿生产保温隔热材料和发泡陶瓷已列入2018国家工业固体废物资源综合利用产品目录。基于钾长石在开采利用过程中产生的大量尾矿所造成的资源浪费和环境污染等问题,本研究采用低品位的钾长石尾矿制备多孔保温隔热陶瓷复合材料,有利于实现矿物资源的综合利用,
论文部分内容阅读
建筑保温材料的使用是降低建筑能耗的有效手段之一,多孔保温陶瓷凭借其优异的不燃、耐久和良好的保温性能在近年来得到了广泛应用。矿物是制造建筑材料的常用原料,利用尾矿生产保温隔热材料和发泡陶瓷已列入2018国家工业固体废物资源综合利用产品目录。基于钾长石在开采利用过程中产生的大量尾矿所造成的资源浪费和环境污染等问题,本研究采用低品位的钾长石尾矿制备多孔保温隔热陶瓷复合材料,有利于实现矿物资源的综合利用,减少环境污染,降低生产成本。以低品位钾长石尾矿为主要原料,碳化硅为发泡剂,采用高温发泡法制备多孔发泡陶瓷,研究了烧结制度、球磨时间、成型压力和发泡剂用量对多孔陶瓷的性能影响。使用硼砂和轻质碳酸钙为助熔剂,降低多孔陶瓷的烧结温度,使用氧化铁为稳泡剂,调节多孔陶瓷的发泡过程。引入微晶玻璃与多孔陶瓷相结合制备具有装饰、保温功能一体化的微晶玻璃多孔陶瓷复合材料。研究结果表明:(1)以钾长石为主要原料,碳化硅为发泡剂,采用高温发泡法可以制备出性能良好的多孔保温陶瓷,最佳工艺条件为原料混合球磨50 min、成型压力15 MPa、发泡剂用量1 wt%、发泡温度1250℃和保温时间30 min。在优化实验条件下,制得的多孔陶瓷样品体积密度为0.427 g/cm3,吸水率为17.39%,导热系数为0.065W/(m·K),抗压强度为5.375 MPa。(2)硼砂和轻质碳酸钙均有较为明显的助熔作用,可以降低多孔陶瓷的发泡温度。但是以硼砂为助熔剂制备的多孔陶瓷气孔结构不均匀,需要稳泡剂氧化铁辅助改善多孔陶瓷发泡过程。使用硼砂作为助熔剂时,添加1 wt%碳化硅、7 wt%硼砂、2.5 wt%氧化铁,1150℃下制得多孔陶瓷样品体积密度为0.541 g/cm3,吸水率为12.01%,导热系数为0.064 W/(m·K),抗压强度为5.133 MPa;使用轻质碳酸钙作为助熔剂时,添加1 wt%碳化硅、2 wt%轻质碳酸钙,1150℃下制备得到的多孔陶瓷样品体积密度为0.474 g/cm3,吸水率为13.32%,导热系数为0.061 W/(m·K),抗压强度为4.108 MPa。(3)利用二次布料、一次烧结的工艺可以成功制备出不发生开裂、表面平整、性能良好的微晶玻璃多孔陶瓷复合材料。其微晶玻璃面维氏硬度可达到7.91 GPa,复合材料的抗压强度为4.27 MPa,体积密度为0.57 g/cm3,吸水率为9.62%。
其他文献
随着工业化进程推进,环境污染问题日益尖锐,可再生能源及能源存储技术的研究与开发迫在眉睫。在众多能量存储设备中,锂离子电池和超级电容器是比较有发展前景的两种。其电化学性能极大程度上取决于电极材料,因此研发高性能电极材料是提高器件性能的关键。本文以碳材料与硫化镍为研究对象,通过对复合材料的纳米结构进行合理的设计,以充分发挥各组分的协同效应,从而达到进一步提高储能器件的电化学性能的目的。论文具体工作内容
石墨烯具有很多优异的性能,但是因其二维结构片层之间容易发生堆叠现象,石墨烯电极材料影响了在超级电容器中电容的表现,这些缺点使得石墨烯在超级电容器领域中受到很大的局限性。为了解决这些问题,本论文采用化学气相沉积法和化学还原自组装法制备出三维多孔结构石墨烯材料,以三维石墨烯材料为载体复合二氧化锰,制备出良好的超级电容器电极材料。(1)采用化学气相沉积法以聚苯乙烯颗粒为固态碳源在泡沫镍骨架上制备出大面积
抗生素因被广泛使用而被不断注入到环境中,成为环境中广泛存在的一类新型污染物。高级氧化技术具有高效、简便、二次污染少等特点,因此被广泛用于有机污染物的降解。本论文以氟甲喹(FLU)和磺胺甲氧哒嗪(SMP)两种抗生素为研究对象,从光催化降解和光氧化降解两个方面对其进行研究。具体从以下三个方面展开:(1)采用热分解法合成了三种氮掺杂的TiO_2光催化剂,以FLU作为目标污染物,评估了所制备催化剂的光催化
热障涂层材料广泛应用于燃气轮机的高温部件中,能够有效地提高发动机叶片使用寿命和使用温度。氧化锆材料具有良好的高温相稳定性、高的热膨胀系数、低的热导率和优异的力学性能受到人们的广泛关注。本论文以氧化铈(CeO_2)和氧化钪(Sc_2O_3)作为氧化锆的稳定剂,采用水热合成法和高温固相合成法制备了一系列钪铈共稳定的氧化锆陶瓷材料(SCZ),并对这些材料的热物理性能、力学性能、抗Na_2SO_4+V_2
等几何分析采用样条函数构造几何模型,实现CAD与CAE的集成分析,该方法由Hughes等人首次提出,并广泛应用于位势问题,热传导问题等。本文关注热传导问题,将构造CAD模型的样条基函数用于CAE分析模型的几何表达与物理场近似。常用的等几何分析方法包括NURBS与细分曲面。本文先将等几何分析与边界元法相结合进行二维热传导问题分析,由于几何的精确性构造与物理场的高阶近似,可获得高精度的计算结果。为了进
工程结构裂纹扩展的数值模拟在现代工业设计中起到指导作用,而在实际工程中,不确定性是普遍存在的,它可能由不同原因导致,如:固有的材料随机性、几何尺寸、制造偏差和动态加载。综合考虑实际随机参数对结构系统的影响,能够提高评估的可靠性。本文针对裂纹扩展问题进行随机性分析,并考察一些重要参数对结构响应的影响。采用等几何边界元法(IGABEM)对确定性断裂问题进行模拟。等几何边界元法的核心思想是采用计算机辅助
黏性土吸水膨胀、失水收缩、受压体缩、卸荷体胀,水分蒸发导致的土体收缩与外部应力导致的土体压缩是黏性土体积变化的主要部分,对土体收缩与压缩行为的深入研究具有重要的理论意义与应用价值。以1.5倍液限制备Wyoming膨润土、宁明膨胀土、荆门黄褐色膨胀土、Denver膨润土、Denver黏土岩、荆门棕褐色膨胀土、信阳黏土、武汉黏土、三门峡粉质黏土、郑州粉土、煅烧高岭土泥浆固结样,开展11种黏性土、4种初
钛基配位框架材料(包括钛基配位聚合物和金属-有机框架)在催化领域显示了良好的应用前景。然而这类材料的合成依然面临极大地挑战。本论文研究了钛基配位框架材料的合成与结构调控,包括钛基配位聚合物的无溶剂合成与孔结构调控,以及钛基金属-有机框架纳米晶的尺寸和晶面调控。对材料的催化性能,以及催化活性与结构之间的构效关系进行了系统的研究。本论文研究取得了以下研究成果:1、通过无溶剂法,以N-乙基哌嗪(H_2n
现代混凝土目前朝着绿色,高强度,高性能的方向发展,矿物掺合料与纤维已成为已经成为高性能混凝土必不可少的组成成分之一。本文以C30为混凝土强度设计基准,首先进行无添加材料下的普通混凝土配制及抗压试验,最终选定为0.45的水胶比作为钢纤维与纳米材料复合增强混凝土的初始水灰比。实验采用单掺,双掺和三掺的设计方法,实测混凝土28天抗压强度。单掺方法为:在混凝土中单独掺钢纤维、单掺纳米CaCO_3、单掺纳米
硅酸盐水泥在现代化基础设施建设过程中被广泛应用,然而硅酸盐水泥所用原料和生产工艺加剧了对现有资源的浪费和环境的污染,与我国近年来提出的践行绿色发展,推动生态文明建设理念相违背。高炉炼铁的过程中会产生大量矿渣,火电厂发电过程中会产生大量的粉煤灰,若能将这些工业副产品变废为宝应用到土木工程建设中,符合当代可持续发展战略的时代主题。碱矿渣混凝土正是将矿渣作为主要的胶凝材料,粉煤灰作为掺合料,用强碱溶液激