【摘 要】
:
本文以高架地板数据中心为研究对象,研究风能在数据中心中潜在的应用可能性,从而提出一个提高其空气冷却效应的有意义的节能方法。本课题尝试在数据中心板下空间应用风力发电技术提高数据中心能效,由于考虑到数据中心大多存在空调供风过冷的问题,所以在板下空间利用这一部分过冷的风能驱动风力机进行发电,作为数据中心的储备电源。此项研究工作是首次在数据中心中应用风力机技术,所以具有良好的研究前景和工程应用价值。首先,
【基金项目】
:
中央高校基本科研业务费项目(N160304006);
论文部分内容阅读
本文以高架地板数据中心为研究对象,研究风能在数据中心中潜在的应用可能性,从而提出一个提高其空气冷却效应的有意义的节能方法。本课题尝试在数据中心板下空间应用风力发电技术提高数据中心能效,由于考虑到数据中心大多存在空调供风过冷的问题,所以在板下空间利用这一部分过冷的风能驱动风力机进行发电,作为数据中心的储备电源。此项研究工作是首次在数据中心中应用风力机技术,所以具有良好的研究前景和工程应用价值。首先,使用计算流体动力学(CFD)方法探讨风力机的参数特性对穿过多孔砖的冷空气流量,板下空间流场分布和机柜入口温度的影响。采用空气阻尼作为风力机的简单模型进行建模,通过推力系数(CT)来计算风轮产生的阻尼力,观察风轮到空调单元(CRAC)的距离(H)和推力系数对数据中心冷却效应的影响。研究结果表明风力机参数对板下空间气流分布和机柜入口温度的影响较小,而相比较风轮的位置而言,推力系数的变化对穿过多孔砖的气流影响略大。但从总体的气流分布和变化来看,风力机的参数特性没有对数据中心的冷却特性产生明显的影响。总之风力机在数据中心板下空间的应用,是提高数据中心能效的一个有价值的制冷方案。其次,为了进一步研究风力机在数据中心板下空间应用的合理性,结合紊动冲击射流理论来研究风力机对板下空间气流风量,射流区域气流速度分布和压力分布的影响。在空气阻尼下端采用监测面对气流的风量进行监测,观察阻尼对气流的削弱影响。分析机房2的板下空间XZ平面上不同高度层次的气流速度和压强的分布以及轴向速度与压强的无量纲分布,通过对X轴方向上设置气流速度监测点,分析空气阻尼对其周围气流的扰动。从而得出,空气阻尼对板下空间气流风量的削弱较小,对气流速度和压强分布的扰动在可接受的范围内,而且空气阻尼的应用一定程度上加快了板下空间局部气流的流动,使更多的冷空气能够通过多孔砖进入冷通道,消除了部分气流停滞点。在一定程度上,风力机起到了气流加速装置的作用。最后,应用神经网络对机柜群出风侧进行热点温度预测。传统的CFD模拟方法需要消耗大量的时间,而神经网络模型能在很快的时间内就得到与之相似的计算结果。本文运用了 BP神经网络对数据中心的第A排机柜热点温度进行预测,得到了较好的预测值。但由于输出数据太多,不方便查看机柜群的最高热点温度。所以结合遗传算法优化BP神经网络,对机柜的最高热点进行预测,通过改变机柜内部风扇单元的供风量观测最优的供风方案。并且得到的神经网络模型能够保证精确地预测机柜热点温度,从而很大程度上加快了计算速度。通过对输入参数的优化,得到最佳的数据中心冷却方案。
其他文献
齿轮传动系统作为一种可以传输动力和运动的机构,在各类机械产品中均有所应用,它有着传动效率高、传动比恒定、工作寿命长等优点。作为机械系统中的核心机构,齿轮传动系统的传动性能决定了整个机械系统的工作状态。为了降低系统传动误差,需要研究齿轮的各类误差对系统传动误差的影响情况。而随着计算机技术发展,有限元方法已经成为了一种研究接触分析的重要方法。本文使用有限元法,在较好地为渐开线齿轮实体模型划分六面体网格
低维量子材料具有新奇的物理性质和潜在的应用前景,引起了广泛的研究兴趣。分子束外延(MBE)和扫描隧道显微镜(STM)是制备和研究低维量子材料的有力手段。为此我们自主设计和搭建了两套分子束外延系统,包含真空腔体、泵组、蒸发源、样品操纵台、样品生长监测装置、氩离子溅射枪和针尖处理装置等部分。我们还将自主搭建的两套分子束外延系统分别集成到Unisoku公司生产的低温(5 K)和室温两套商用扫描隧道显微镜
生物质催化热解制备芳香烃化合物是一种具有前景的方法,沼气渣富含木质纤维素,通过催化热解制备芳香烃化合物可以实现沼气池内生物质原料的资源利用最大化。鉴于此,本研究通过探讨沼气渣热解特性及动力学分析以及分子筛作用下的催化热解特性,并研究沼气渣中无机矿物质碱金属对沼气渣催化热解制备芳香烃的影响,探讨了沼气渣催化热解制备芳香烃的可行性。具体内容如下:首先,通过TG-DTG分析沼气渣热解随着温度的质量变化特
整流器是将交流信号转变为直流信号的器件,在逻辑电路、电力传输等领域有着重要应用。当前,市场上使用的整流器主要是通过硅基PN结二极管实现,而场效应整流器则利用栅极对于沟道材料的调控来实现整流特性,相比于常用的PN结整流器具有导通电压低、击穿电压高等优点,在功率集成电路方面更有优势。在现有研究中,场效应整流器主要基于Al Ga N/Ga N材料内构建的二维电子气来实现,成本仍然较高。而二维材料天然的超
目前工程应用中主要采用高分子材料对PZT陶瓷堆进行粘结,存在导电性能差、易老化,耐碰撞冲击性能差等缺点。合金焊粉和助焊剂主要应用于电子封装领域,其焊接接头具有强度高、可靠性好,电导率高等优点,但受铁电材料热退极化温度所限,传统钎焊工艺无法应用在PZT陶瓷堆的连接中。本实验提出将低熔点合金焊料(<100℃)作为中间层材料,基于瞬时液相连接的原理,研究对PZT陶瓷的低温冶金焊接。研究主要涉及低熔点合金
进入二十一世纪以来,我们面临巨大的能源资源枯竭以及二氧化碳大量排放所造成的温室效应等问题。对于清洁能源开发和二氧化碳减排的研究受到越来越多的重视,因此新型能量转换技术和装备的研发备受关注。固体氧化物电池(SOC)是一种新型高效的能量转换技术,包括固体氧化物燃料电池(SOFC)和固体氧化物电解池(SOEC)两种互逆的过程,其中SOFC是可以高效地将燃料气体中的化学能转化为电能的装置,而SOEC作为S
随着工业机器人在许多生产领域中发挥着越来越重要的作用,人们对机器人性能的要求不断提高,机器人必须具有良好的可靠性,而其动态特性直接关系到机器人在工作时的可靠性、稳定性。由于结构几何尺寸的随机性会影响系统的动态特性,而机械臂是机器人主要的支撑部件,因此对机器人整机进行模态分析,研究大臂的结构参数对整机动态特性的影响,并对其频率可靠性稳健设计有着十分重要的意义。本文的主要研究内容如下:(1)对机器人进
随着生活水平的提高,人们对服装品质提出了越来越高的要求,传统的服装加工方式逐渐不能满足日益增长的需求。现代数控技术的发展,使越来越多缝纫工艺实现自动化成为可能,针对特殊加工工艺开发相应的专用设备成为缝纫工业发展的趋势。但是,目前大多数缝制设备都是基于直角坐标系下的运动控制系统,对送料机构的设计具有较多的限制,而且加工的线迹不能达到所有行业的要求。因此,本文旨在提出一种更自由的旋转送料方式,首先设计
针对Ether CAT应用中的设备单元的快速布局问题,考虑目前的PC控制方案中缺乏一种低成本的基于组态的快速布局与设备控制方法,本文提出了一种组态化的可重构设备控制解决方案。同时,本文为该方案提供了支持可重构的从站设备和开放化PC控制器的硬软件实现方法,然后根据所提出的硬软件方案,搭建一个制造单元系统,并在不同平台下进行相关制造应用场景实验以验证该方案的可行性。本文的主要研究工作包括:首先,在Et
多孔泡沫材料因其具有良好的力学性能和隔热、缓冲、隔音等多功能特性被广泛应用于航空航天、汽车、建筑等工程领域。泡沫具有应力几乎保持不变的平台阶段,因而具有良好的能量吸收能力和抗冲击性能,常作为包装和能量吸收材料,应用于结构安全防护和被动安全领域。泡沫材料具有广泛的应用前景,但目前对其大变形力学响应的研究还不够完善,这在一定程度上限制了其应用。本文旨在通过实验研究、数值模拟、理论分析,探究泡沫材料以及