逼近论中若干经典与前沿问题的研究

来源 :浙江大学 | 被引量 : 1次 | 上传用户:shuper
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文由以下三个部分组成: 第一部分:分子为给定次数多项式的有理函数的逼近。我们分别比较系统地研究了分母为实系数多项式和正系数多项式两种不同情形下的有理逼近的Lp逼近速度估计问题、点态估计问题、共正逼近问题等有重要意义的问题。无论是所得结果还是所用的方法,都是对已有结果和方法的改进和创新。进一步,我们还提出了一些有待解决的问题,这些问题的解决需要用新的方法,但任何正面或反面的回答都将推动这个方向的进一步研究。 第二部分:Turán不等式。我们首先考虑了分母为具有给定奇点的有理函数的Turán不等式,所得结论是Min[Min]的本质性改进,并回答了Min所提出的问题。我们还考虑了加双倍权、A*权等具有内部奇性权的Turán不等式,对已有方法进行了简化。 第三部分:Fourier分析中若干经典结论的推广。我们在Le和Zhou所提出的GBV条件的基础上,引入了一种新的NBV条件,从而实现了把单调性条件从“单边控制”向“双边控制”的转变。我们研究了MS,QMDS,RBVS,AMDS,GBVS和NBVS等不同数列之间的关系,在此基础上,我们给出了NBV条件在研究三角级数的一致收敛性、L1收敛性、Lp可积性、连续函数的强逼近等Fourier分析经典问题上的应用,对一些经典的结论作了推广。
其他文献
本文分成三大部分。在第一部分中,我们研究全纯向量丛上的Coupled Vortex方程,利用热流方法解决了Coupled Vortex方程的Dirichlet问题;并在一类完备非紧的K(?)hler流形上,证明了Coupled Vortice(即Coupled Vortex方程的解)的存在性。以上结论推广了Donaldson[Do3],以及L.Ni[Ni]等人的有关结果。在第二部分中,我们研究一般
学位
本文主要研究了批处理机排序和装箱问题的一些新模型.排序问题和装箱问题都是经典的组合优化问题,受到众多学者的关注。随着社会的发展,又不断地产生一些新模型.批处理机排序问题就来源于现实生活中的半导体以及大规模集成电路生产中的产品检验阶段,一台机器可以同时对多个工件进行加工,只要工件的尺寸和不超出机器的容量.同时加工的工件称为一批,其加工时间是批中最长的工件的加工时间。我们对两种单台批处理机排序的在线模
本文分成两章。在第一章中,我们讨论了高维带边黎曼流形上的Ricci流。在第二章中我们讨论了一般黎曼流形中紧致超曲面在平均曲率流下的形变并且对它们的第二类奇点进行了分析。 Ricci流的研究始于Hamilton的1982年的文章[Ha1]。在这篇文章Hamilton不仅引入了Ricci流这个概念,并且证明了具有正Ricci曲率的闭3-流形上一定存在着常正曲率度量。接着,在另外一篇非常重要的文章
学位
本文分成两大部分。第一部分包括第一章,我们讨论了多项式(α,β)-度量射影平坦的充分必要条件,特别是形如F=α(1+α1s+α2s~2+α4s~4)的Finsler度量,其中α是一个Riemann度量,s=β/α,β是一个1-形式,αi为常数,i=1,2,4且α1≠0。第二部分包括第二章和第三章,在第二章中我们讨论了形如F=α+εβ+(2kβ~2)/α-(k~2β~4)/(3α~3)的Finsle
学位
本文分成两大部分。第一部分包括第一和第二章,我们讨论了Finsler几何中的一些问题。第二部分包括第三章,我们讨论了L2调和形式的不存在性问题。 第一章给出了Schwarz-Ahlfors引理在Finsler几何中的一个推广,从而推广了文[GIP]的结果。 经典的Schwarz引理是: “设φ:D→D是单位圆盘之间的全纯映射,满足φ(0)=0,则|φ(z)|≤|z|,且φ’(0)
学位
本文主要研究了Cn单位球、有界强拟凸域、有限型凸域上的一些函数论问题。共分三章,第一章引进了Cn单位球面上的面积积分和不变g函数,研究它们在BMO空间以及non-isotropic Lipschitz空间上的有界性问题。第二章给出有界强拟凸域上Bloch空间、小Bloch空间的等价刻划,也给出了Bergman空间上复合算子紧性的等价描述。在第三章,我们研究了有限型凸域上加权Bergman空间情形的
学位
调和分析作为数学的一个重要分支,有其深厚的历史背景和丰富完善的理论体系,在数学的诸多领域如偏微分方程,几何分析等有着广泛的应用。 本学位论文将致力于调和分析及其在偏微分方程,几何分析的应用.全文共分四章:第一章研究一类奇异积分算子在加权Hardy空间的有界性。第二章考虑Euter方程在Besov空间端点指标情形的短时间解的存在性。第三章得到了Navier-Stokes方程正则性和爆破的判别条
学位
本文主要研究的是Marcinkiewicz积分,奇异积分和分数次积分及其交换子的有界性问题。全文共六章,首先我们简单回顾历史研究这些算子的背景和相关的方法,从而提出本文要考虑的问题。 1 Marcinkiewicz积分和Marcikiewicz积分交换子 1.1 Marcinkiewicz积分 众所周知Littlewood-Paley g函数,gλ*函数及Lusin面积S函数在调
学位
目的了解医学生吸烟情况及知信行现状,为学校制定控烟政策提供参考依据。方法采用分层随机整群抽样的方法,选取山西某医学院校500名学生进行问卷调查,使用SPSS 22.0软件进行统计分析,主要统计学方法包括χ~2检验、logistic回归分析等。结果医学生吸烟率为9.7%,其中男生吸烟率为27.6%,女生吸烟率为0.3%,男生吸烟率明显高于女生(χ~2=90.587,P<0.01);被动吸烟率为55.
我们测序和分析了一株从深海中分离的耐冷耐压希瓦氏菌Shewanella sp.wp3、一株具有高度致病性和抗药性的人猪致病沙门氏菌Salmonella Enterica Serovar Choleraesuis SC-B67和一株以肠道细菌为宿主的噬菌体bacteriophage T5的全基因组,它们都是来自于或侵染gamma变形菌纲的物种。Shewanella sp.wp3基因组由5,396,4