【摘 要】
:
淡水资源匮乏是一个迫在眉睫的全球性环境问题,与此同时,地球表面大量的海水资源因含盐量过高而无法直接用于人类的生产和使用,海水淡化无疑是提高淡水资源实现可持续供给的最佳手段之一。膜蒸馏技术具有分离效率高、占地面积小、无需提供额外的压力、所需温度相对温和,同时可以结合一些低品位的绿色能源提供所需热源等优点,在海水淡化方面拥有良好的发展前景。但是在长期运行过程中,膜蒸馏技术的核心组件—蒸馏膜—仍存在疏水
论文部分内容阅读
淡水资源匮乏是一个迫在眉睫的全球性环境问题,与此同时,地球表面大量的海水资源因含盐量过高而无法直接用于人类的生产和使用,海水淡化无疑是提高淡水资源实现可持续供给的最佳手段之一。膜蒸馏技术具有分离效率高、占地面积小、无需提供额外的压力、所需温度相对温和,同时可以结合一些低品位的绿色能源提供所需热源等优点,在海水淡化方面拥有良好的发展前景。但是在长期运行过程中,膜蒸馏技术的核心组件—蒸馏膜—仍存在疏水性不足、膜污染和膜润湿等问题,导致其渗透通量较低和长时间截留效果不理想,阻碍了膜蒸馏技术的工业化发展。受荷叶疏水蜡状物和微纳结构共同作用产生超疏水现象的启发,本文采用表面涂覆法和共价接枝法对传统疏水膜进行超疏水改性,制备一种持久疏水、高截留率、高抗污染和高抗润湿性能的超疏水膜,可用于处理复杂成分的海水,淡化脱盐。通过自由基聚合法制备了聚甲基丙烯酸甲酯-g-聚二甲基硅氧烷(PMMA-g-PDMS)共聚物,并以PDMS接枝共聚物作为疏水改性剂,对聚偏氟乙烯膜进行疏水改性。探究了改性液浓度对改性膜的结构性能的影响。结果表明,在疏水改性剂(PDMS接枝共聚物)浓度为8%条件下得到的改性膜的性能最优,改性后的膜平均孔径为0.66μm左右,表面与水的接触角达到149.38°。为了使聚偏氟乙烯膜具备超疏水性,进一步提高它的疏水性能。通过共价接枝法在PVDF基膜表面上接枝纳米Si O2以提高粗糙度,再在膜表面涂覆一层PDMS接枝共聚物降低膜表面能的同时提高复合层的机械稳定性。表面构建了Si O2/PMMA-g-PDMS超疏水复合层的聚偏氟乙烯膜水接触角提高至157.5°,通过一系列的直接接触式膜蒸馏(DCMD)实验的对比,改性后的超疏水复合膜与原膜相比,能长时间地保持稳定的膜通量和较低的透过液电导率,说明具有更好的抗污染和抗润湿特征。
其他文献
自同构是李代数结构理论研究的重要部分,这方面已经有了许多研究成果。Heisenberg李代数是一类重要的幂零李代数,其自同构的研究进展却稍显缓慢。2007年,张海山等得到了 Heisenberg李代数自同构的充要条件,从而使这项研究迈出了重要的一步。在此基础上,2018年,张彦等用矩阵的方式对Heisenberg李代数自同构群的结构做了进一步探讨,得到了 5维情形下Heisenberg李代数自同构
紫外线吸收剂(UV-filters)是一类具有芳香结构的有机化合物,稳定性强、难分解、易导致生物体内分泌紊乱从而影响繁殖与生长发育。且由于亲脂性,它的毒性易通过食物链传播富集。UV-filters在环境水样中浓度水平低,且复杂的基质效应会干扰其含量测定,因此急需建立一种高效、绿色、便捷的定量检测方法。结合漂浮有机液滴固化技术的分散液液微萃取(Dispersive Liquid-liquid Mic
在工业3C自动化产线中,大功率紫外光源(UVLED)被广泛应用于产品固化和UV喷墨打印等工业领域中。在LED光源使用过程中存在光衰和调光补偿问题,以往的光衰测试参数单一,尤其在UV固化领域中,光衰补偿问题并没有得到较好的解决。对此本文提出一种在线式LED光衰检测方法,实现对UV固化过程中的光衰进行监测,采集存储得到的大量测试数据为LED光衰补偿和寿命快速评估提供依据。针对LED光源光衰因素问题,首
偏光片作为液晶显示器不可或缺的重要组成部分,在显示领域有着广泛的应用前景,其质量会直接影响液晶显示器的显像效果,对偏光片进行表面缺陷检测已成为制造过程中的重要环节。目前,依靠人工检测的手段已经不能满足实际生产需求,传统检测方式提取特征泛化能力差,而深度学习能够从大量数据中自主学习,提取到的特征更具有代表性。本文利用基于深度学习的目标检测算法完成偏光片表面缺陷检测,主要研究内容包括以下几个方面:(1
过量的氨氮进入水体后会引起藻类异常繁殖,导致水质下降和影响环境卫生。吸附法具有低能耗、高效等特点,是去除水中氨氮的有效方法之一。净水污泥含有丰富的土壤颗粒、铁铝氧化物等物质,其表面粗糙、多微孔,还含有大量的Fe、Al、Si的活性位点,因此对水中污染物有较好的吸附效果。本实验以净水污泥为原料,在不同的焙烧和改性条件下,通过研磨-改性-造粒-焙烧等工艺制备改性颗粒吸附剂,以氨氮吸附量为衡量指标,筛选得
纺织印染工业中产生的印染废水色度高、毒性强,难以通过传统生物法进行处理。高级氧化技术(AOPs)被认为能够有效去除该类有机物,因其具有降解速率快、氧化性强的特点。其中,基于硫酸根自由基(SO4·-)的高级氧化技术,因其具有p H值适应范围广和氧化还原电位强的特点而受到广泛关注。本文对用于过硫酸盐高级氧化的非均相催化剂尖晶石型铁酸铜(Cu Fe2O4)进行改性研究,通过引入石墨烯(GO)和过渡金属C
2020年9月22日,习近平主席在第七十五届联合国大会上宣布,中国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和,标志着中国正式确立了碳中和、碳达峰战略(简称“双碳战略”),这是党中央经过深思熟虑作出的重大战略决策,既是我国实现可持续发展、高质量发展的内在要求,也是推动构建人类命运共同体的必然选择。当前,中国正迈向建设社会主义现代化的第二个百年新征程。“双碳战略”目标
随着我国工业化深入发展,河道污染问题愈发严重,并因此囤积了大量疏浚底泥,这些疏浚底泥一旦处理不当,极易引发二次污染。相关研究表明,将疏浚底泥烧制成陶粒,能够同时兼顾资源化利用与避免二次污染。近年来,全氟己酸(PFHx A)逐渐在环境介质中被检测出来,其对人类身体健康是一种潜在威胁。PFHx A性质稳定,很难通过传统的生化方法去除,而吸附法可以将其从水体中高效去除,并且成本相对较低,具有较强的实用性
电梯群控技术在大型公共建筑中被广泛采用以优化电梯调度,在缩短用户等待时间、降低电梯运行能耗和机械损耗等方面成效显著。然而,在一般的住宅建筑中,往往单元内设置电梯少,空间约束和成本约束决定其需要简易、高性价比技术和方案等原因,多年形成的住宅建筑规范和惯例,一般不为电梯设计群控系统。近年来,城市高层住宅大量涌现,大量通过消防连廊共用多部电梯的住宅中,节能降耗、提升业主用梯体验等现实需求亟需相应的电梯群
微塑料作为一种新兴持久性有机污染物,严重影响了水生态健康及供水安全。目前,混凝作为水处理工艺中的基础环节,对后续工艺如过滤、消毒、膜过滤等环节有着重要的影响,一定程度上决定了出水水质。微塑料易被水环境中的有机物、无机物和微生物附着,从而影响其表面性质以及在水体中的分布状态,且自然水环境中微塑料成分复杂、形态各异,不易被去除。聚乙烯微塑料随着水中停留时间的增加,在表面形成一层生物膜,影响其在水中的分