【摘 要】
:
近年来,随着雷达和卫星通讯技术的快速发展,电磁波吸收材料越来越受到研究者的重视。理想的吸波材料应具备强的吸收能力、宽的带宽以及薄的厚度等特质。然而传统的介电损耗和磁损耗材料,常存在损耗机制单一、吸收较差,带宽较窄、阻抗匹配较差等问题。本文将软磁金属材料和多孔碳材料相结合,通过对其微观结构以及电磁参数的调控来提高材料的吸波性能。主要研究内容如下:(1)首先通过传统的乳液聚合法合成聚苯乙烯(PS)球,
论文部分内容阅读
近年来,随着雷达和卫星通讯技术的快速发展,电磁波吸收材料越来越受到研究者的重视。理想的吸波材料应具备强的吸收能力、宽的带宽以及薄的厚度等特质。然而传统的介电损耗和磁损耗材料,常存在损耗机制单一、吸收较差,带宽较窄、阻抗匹配较差等问题。本文将软磁金属材料和多孔碳材料相结合,通过对其微观结构以及电磁参数的调控来提高材料的吸波性能。主要研究内容如下:(1)首先通过传统的乳液聚合法合成聚苯乙烯(PS)球,然后以PS球为前驱体模板合成三维蜂窝状纳米Ni/C复合材料。通过SEM、TEM、XRD、Raman等一系列的表征手段对不同碳化温度下得到的纳米Ni/C复合材料进行表征,并且探索了该材料在石蜡基质中的填充量和碳化温度对其吸波性能的影响。结果表明,复合材料中Ni粒子被碳层很好的包覆着,形成较为完整的三维蜂窝状结构。当填充量为60%,碳化当碳化温度为600℃时,三维蜂窝状纳米Ni/C复合材料表现出优异的吸波性能。厚度为4 mm时,其最小的反射损耗(RL)值在7.0 GHz可以达到-55.2 d B,有效带宽为4.40GHz。(2)通过简单的干燥和碳化两步法,将超薄的FeNi3纳米粒子(5-7 nm)成功地嵌在三维蜂窝状的碳基质中,得到三维蜂窝状纳米FeNi3/C复合材料。由于FeNi3纳米粒子的软磁特性以及独特的三维蜂窝状结构,该材料表现出优异的吸波性能。当该复合材料在石蜡基质中的填充量为30%时,最小RL值为-40.6 d B,并且在厚度为2.0-4.5mm范围内,其RL<-10 d B的带宽可以达到13.0 GHz。三维蜂窝状纳米FeNi3/C复合材料优异的吸波性能得益于双重损耗组分的结合、多重极化过程以及蜂窝状的结构。(3)通过静电纺丝和高温碳化相结合的方法成功制备得到纤维状纳米Ni/C复合材料。该纤维直径大约为300 nm,并且Ni纳米粒子均匀地分布在整个碳纤维上。研究分析了碳纳米纤维以及Ni/C纳米纤维的吸波性能。结果表明,当厚度为3 mm时,Ni/C纳米纤维有最小的RL值为-30.6 d B,有效吸收带宽为5.96 GHz;当厚度为2.5 mm时,碳纳米纤维的有效吸收带宽可以达到6.52 GHz,反射率为-25.3 d B。Ni/C纳米纤维优异的吸波性能主要得益于介电损耗和磁损耗的结合,以及纤维纵横交错形成的网络状结构。
其他文献
钢板剪力墙是具有较大的弹性初始刚度、大变形能力和良好的塑性性能、稳定的滞回特性的抗侧力结构。非加劲钢板剪力墙有很多不足,如捏拢现象,使用舒适度不佳,对柱的刚度有较高要求等。很多学者研究布置加劲肋改善钢板力学性能,但加劲肋如何分布在钢板上使得力学性能最优的研究较少。因此,本文基于双向渐进结构拓扑优化法与Abaqus结合,对钢板剪力墙的加劲肋进行拓扑优化设计。主要研究内容和成果如下:(1)总结了钢板剪
乡村贫困问题是制约我国社会经济发展的现实难题之一,也是学术研究的重点课题。从20世纪80年代开始,我国开始大规模的扶贫工作,经历了近40年的努力,于2020年完成了全面脱贫的任务,乡村绝对贫困问题已得到解决,为全球的减贫事业做出了巨大的贡献。进入后减贫时代,我国的贫困形式和工作任务也随之发生重大的变化。党的十九届四中全会指出,2020年后,中国将进入全面乡村振兴时期,乡村减贫的重心将转向解决“相对
伴随着二胎政策的实施,幼儿数量逐渐增长。因幼儿生长发育变化较大及购买者的冲动消费,造成二手幼衣的数量逐渐增多。由于二手幼衣穿着周期较短,所以质量较新,因此是很好的再利用资源。但是,由于生活水平的提高和传统观念的影响,导致大部分二手幼衣没有得到合理的利用,因此对环境造成了严重的污染。如果将数量庞大的二手幼衣利用起来,不仅可以产生生态效益,同时还可产生经济效益。本文从“upcycle理念”,“迎合宠物
城市路网在空间上错综复杂、路况在时间上更是千变万化,这对城市交通管控工作提出了严峻挑战。而在交通管控中,通过数学模型对全路网进行准确描述是非常困难的,更不存在一劳永逸解决城市拥堵问题的方法。因此在进行拥堵治理时,把握重点、再辐射全网,不失为一种更科学、更可持续的方法。本文将城市中车流呈现规律性拥堵的区域、突发事件导致严重拥堵的区域定义为城市关键区域。此类区域特点在于拥堵的时空同质性强、区域路网更为
在低厚度、低热阻、低成本及高集成化的驱动下,广泛应用于智能手机、智能手表及穿戴式产品等领域的半导体元器件对封装技术、材料及工艺的要求越来越高。大板级扇出型封装作为目前无需层压基板,也无引线键合的先进封装技术,它拥有更小的厚度、更低的成本、更短的互连及更好的电性能。此外,扇出型封装的凸点间距(Bump Pitch)无限制,弥补了基板制造能力的缺陷,因此它被称为“后摩尔时代”最重要的封装形式。与硅通孔
定制型装备制造业为国民经济各行业输送了大量的定制化技术装备,保障了其正常生产经营。目前,定制型装备制造企业不仅生产装备,还提供了生产线设计、装备安装、售后维修等一体化服务,从装备生产商转变为制造服务提供商。其中,装备安装是客户订单交付前最后一个环节也是最重要的一个环节,具有作业周期长、涉及物料数量及种类繁多、异地装配、非重复性作业等特点。然而,在实际的安装过程中,定制型装备制造企业缺乏科学、有效的
机器人取代人工制造装配成为制鞋企业向现代化发展的重要方向,随着机器人技术的迅猛发展,在动作执行方面取代人工已经变得简单,但柔性化、多样化生产等关键问题仍需解决。近年来,机器视觉技术的发展弥补了机械自动化多方面的缺陷,实现更灵活更精确更高效的智能加工制造。鞋业制造装配涉及多个工序,其中胶水喷涂与装配贴合最主要环节,也是人工操作最多的环节,引入机器人以及3D机器视觉技术可实现鞋业智能化柔性制造,取代人
系统辨识研究的是在给定了输入和输出的数据之后,从拟合模型中确定出一个与所测系统等价的模型.本文将研究稳定的线性时不变(Linear Time-Invariant,LTI)因果系统的辨识问题.由于我们可以将稳定的线性时不变因果系统模型看成是复数域上的有理函数模型,所以对于LTI系统的辨识问题往往可以归结于有理函数模型的拟合问题.关于有理函数的拟合问题往往可以转变为寻找其极点和零点的问题,然而寻找一个
相变蓄热技术已成为电池热管理(BTM)的重要方式之一。为了满足工程应用需求,通常在相变材料中(PCM)加入高分子组分以大幅提高复合PCM(CPCM)成型加工性及循环稳定性,如聚乙烯、聚苯乙烯和环氧树脂等,但传统的CPCM存在刚性强、接触热阻大等缺陷。为了减小CPCMs与电池之间的接触热阻,近年来研究者们开发的柔性复合相变材料(FCPCMs)与刚性复合相变材料(RCPCMs)相比,能有效地降低电池热
随着中国经济的快速发展,人民可支配收入持续提高,消费结构不断升级,浴缸逐渐走入千家万户成为标配的卫浴产品,浴缸市场前景广阔。但是我国浴缸制造行业的加工仍以人工作业为主,加工精度低,加工效率慢,产品一致性差,加工环境对工人健康的危害更不可忽视。在制造行业,工业机器人已逐渐替代工人成为生产的主力军,利用工业机器人从事危险程度高,枯燥乏味的工作也将是未来的发展趋势。我国浴缸制造行业同样处于产业结构升级阶