论文部分内容阅读
粒子探测器的发展极大地促进了人们对微观世界的了解。RD51项目合作组研发的SRS系统是一种可扩展的探测器读出系统,可以适用于不同的前端读出芯片。VMMASIC是在ATLAS实验中开发出的一款前端读出芯片,具有读出速率高、灵活性强等特点。为了适应更加复杂更高能量的粒子事件,RD51决定用VMM芯片升级SRS的前端电子学。由于前端读出的速率大幅提升,而现有的SRSFEC固件在数据处理上有诸多不足,无法处理迅速增加的数据量。本文以此为课题背景,对SRSFEC固件高速数据处理部分进行重设计,以期提高读出系统的传输率和实时性。本文首先对SRS系统的核心部件VMM芯片及的其它关键硬件作了简要介绍,阐述了其数据读出硬件传输链路。在此基础上对数据汇聚处理中心—FEC固件的整体架构以及其中各个模块进行了简要分析,指出了原有固件程序在数据处理与传输结构上不能匹配VMM高数据读出要求的问题。由此提出本文的设计目标与方案,完成了基于VMM前端电子学高速数据读出的固件设计。主要研究工作如下:(1)设计了新的数据帧格式,将数据存储效率和数据传输效率从59%提高到79%。原系统中,输入的38-bit有效hit数据在存储时添加了26-bit’0’组成64-bit,数据存储效率仅为59%。加上每一帧以太网数据在添加时间和位置信息上的损失,数据传输效率进一步降低。本文设计10-bit字段用于装载时间和位置信息,与原38-bithit数据组成48-bit的新数据格式,有效提高了数据存储与传输效率。(2)提出了高速FIFO和DDR3两级缓存方案,解决了大数据量突发时的数据丢失问题。原系统中使用的缓冲区只能存储512个hit,当短时间内输入速率非常高时,缓冲区会迅速溢出,导致数据丢失。本文设计使用FIFO与DDR3形成两级缓冲,能将一段时间内持续输入的高速数据全部缓存到大容量DDR3中,避免了前端出现大量突发数据时的数据丢失问题。(3)提出并实现了提高数据传输实时性的解决方案。原系统在一个读出周期内针对每一路VMM数据先缓存,再将缓存后的整段数据装入一个以太网数据包发送。这种每通道512hits—次读出的方案大大降低了传输的实时性。本文设计方案将每通道1 hit的数据依次循环读出、组装满以太网数据包后发送,保证数据缓存和数据读出可以独立同时进行,有效提高了数据传输的实时性。(4)增设了有效事例触发判选读出功能,进一步提升了传输带宽的利用率。根据触发的到达时间和用户配置信息,计算分析有效事例条件并筛选事例数据。实际的物理实验中存在大量的无效事例,这样进一步提升了传输效率和传输带宽利用率。本文完成了新型SRS系统的固件升级,通过内部逻辑分析仪对时序进行分析,验证了上述功能固件逻辑的正确性。固件升级后的SRS系统进行了实验室测试和束流测试,测试结果表明,该系统能良好稳定运行,且实现了高效率、高实时性的传输。在触发模式下也能有效筛选事例。