论文部分内容阅读
周期解的存在性和多解性一直是微分方程定性理论的一个重要组成部分.因为周期现象在生活中非常普遍,而且其在医学、物理学、天文学上的广泛应用,所以周期解受到许多关注.本文主要研究了几类带有阻尼项的二阶微分方程周期解的存在性和多解性,文章共分为六个章节进行论述.第一章主要对二阶微分方程周期解的研究背景和国内外研究现状进行说明,并给出本文的主要研究内容.第二章给出了判断二阶非齐次微分方程的格林函数为正的方法.第三章研究了Liebau型微分方程以及更一般条件下该方程的周期解问题,首先分别定义算子,并得到算子是全连续的,之后假设系数函数满足第二章中格林函数为正的条件,之后分别应用锥压拉不动点定理和不动点指数定理,得到Liebau型微分方程周期解的存在性和多解性.第四章主要探讨了一类非线性二阶微分方程周期解的性质,将求解方程的周期解转化为求周期边值问题的解,与之前的研究相比增加了阻尼项的情形,并考虑了函数存在奇异以及可以为负值也可变号的情况,首先定义线性算子及非线性算子,通过Arscoli-Arzele定理,得到算子的全连续性,之后也假设系数函数满足第二章中格林函数为正的条件,再比较非线性项与第一特征值的关系,从而获得结论.在本章最后给出了三个例题来验证结果的正确性.第五章考虑了一类带有阻尼项的泛函微分方程,首先定义全连续算子,得到了该算子与参数之间的关系,之后同样假设系数函数满足第二章中格林函数为正的条件,然后通过运用锥上的不动点定理,得到当参数满足某些条件时,方程有一个、两个或没有周期解的存在.最后给出两个例子验证结果的正确性,并发现若只改变时滞函数,周期解的个数就会发生改变,并对一个解的情况通过数值模拟进行验证.第六章对本文的研究内容给出了总结,并进行了研究展望.