X6Y6(X=Mo,W;Y=S,Se,Te)纳米线的稳定性和电子性质研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:peteryang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低维体系是当今材料科学和凝聚态物理领域关注的焦点之一。一维材料具有比二维材料更为显著的量子限域效应,这一特点也赋予了其更为突出和优异的物理化学属性。过渡金属硫化物纳米线作为典型一维结构,与单纯半导体性的层状2H相过渡金属硫化物不同,其既可为半导体性,亦可呈金属性,其电子性质取决于材料中硫族元素的种类,利用这一特性有望实现全过渡金属硫化物纳米线电子电路。系统研究过渡金属硫化物纳米线的物性可为低维材料设计和器件构筑提供理论指导。本文主要开展了如下工作:(1)利用第一性原理计算,系统研究了10(?)~16(?)直径范围(n,0)型碳纳米管(CNT)包覆的过渡金属硫化物纳米线(TMCNW)X6Y6(X=Mo,W;Y=S,Se,Te)的稳定性和电子性质。计算结果表明,由于CNT的保护作用,所有TMCNW都可稳定地存在于特定的碳纳米管中。对TMCNW,尽管受到CNT的影响,其仍然能够保持本征电子性质。此外,我们还发现CNT与TMCNW之间存在电荷转移现象。通过分析复合结构的电荷转移,我们发现在含碲元素的复合结构中,电荷从TMCNW向CNT转移,而在未含碲元素的复合结构中,电荷从CNT向TMCNW转移。这些研究成果揭示了碳纳米管中TMCNW的稳定性及其电子性质,可为TMCNW在实际应用中的进一步发展提供理论指导。(2)采用第一性原理计算方法,系统研究了弯折构型Mo6S6的电子性质。计算结果表明,Mo6S6弯折结构都呈现出异于直线Mo6S6纳米线的半导体性,且不同长度弯折型Mo6S6的带隙不同。有趣的是,通过能带折叠理论可预测出弯折型Mo6S6的带隙,且预测值与实际计算的带隙值十分接近。此外,还研究了应变对弯折型Mo6S6纳米线的电子性质的影响。结果表明长的弯折型Mo6S6纳米线在施加不同应变后,其带隙值的变化幅度不大,说明弯折型Mo6S6纳米线具有较好的电子稳定性。通过分析Mo-Mo键在应变下的键长变化情况,可对弯折型Mo6S6纳米线的电子稳定性进行解释,且该稳定性会随着弯折型Mo6S6纳米线长度的增加而愈发明显。本章的研究结果表明,可通过弯折处理打开金属性Mo6S6纳米线的带隙,而弯折型Mo6S6纳米线在应变下的电子稳定性表明其是构建柔性纳米器件的理想材料,从而可拓展Mo6S6纳米线在微纳器件领域中的应用。
其他文献
本论文利用高分辨率、高灵敏度和宽能段的X射线卫星的观测数据,研究了超新星遗迹的X射线辐射性质和黑洞X射线双星的时变性质。本论文第一部分工作是利用Chandra卫星的观测数据,研究了超新星遗迹Cassiopeia A(Cas A)的X射线辐射性质。通过对超新星遗迹Cas A分区域产生能谱并拟合得到各物理参量,得到了遗迹中SE和NW区域S和Si元素的流量以及它们流量比值随遗迹半径的分布。发现S与Si元
随着现代社会的高速发展,能源紧缺和环境污染的问题也越发严重。光催化技术将太阳能转换成化学能,具有能耗低、可持续、反应条件温和无二次污染等优点,在新能源开发和解决环境问题方面有着广泛的应用前景。在半导体光催化材料的选择上,二氧化钛(TiO2)半导体光催化材料以无毒、价廉、稳定性好和光催化活性高等优点被广泛应用于污水处理、空气净化、抗菌、自清洁材料和分解水制氢等领域。但是TiO2禁带宽度较宽,只能实现
光电探测器是一种将外界的光信号转化成电信号的光电子设备,在农业监测、成像、光通讯、安检安防等领域应用广泛。因此,开发高性能的光电探测材料和器件具有重要的研究价值。自2004年石墨烯被成功制备以来,类石墨烯的二维材料得到快速发展,为研究者提供了良好的研究平台,基于二维材料的高性能电子、光电子器件被广泛报导。过渡金属磷硫属化合物是一大类包含三种及以上元素的二维层状材料,其丰富的能带结构与新奇物化特性受
热输运特性一直是物理和材料研究领域中的前沿课题,尤其是对微纳材料的热输运现象的探索,更是极具研究价值和重要应用意义。对材料热输运特性的研究,有助于解决困扰着当今世界所面临的众多基础问题,比如:发现新型高效的高效散热材料帮助解决电子器件中的热聚集,设计制造更加优秀的热电设备帮助缓解能源短缺,开发新型的热流控制器件帮助优化热量调控。近年来,新型的磷纳米管类材料被成功制备。考虑到磷基材料的优异物理性能和
近年来,语音信号的盲分离逐渐成为了盲信号处理的一个研究热点,它在移动通话、语音识别、语音定位以及视频通话等很多领域都具有广阔的市场和应用前景。在真实的室内环境中,语音从信源传递到接收器的过程中存在多径效应,也就是有延时、反射、折射等影响,会产生较大的混响成分。因此,一个接收器接收到的信号一般都不是线性瞬时混合的,而是卷积混合的。本文对语音卷积盲分离理论进行深入的研究,设计模拟室内环境的语音盲分离实
碳元素是地球上众多元素中最丰富的元素之一,同时也是人们最熟悉的元素之一。石墨和金刚石作为人类早期接触的碳同素异形体,在自然界中的储量非常丰富。随着人们对碳材料的深入研究,越来越多的碳同素异形体可以通过人工制备得到。这其中就包括:零维的富勒烯、一维的碳纳米管、二维的石墨烯以及三维的石墨烯网络。碳元素的轨道杂化方式多种多样,如:sp、sp2和sp3杂化,这使得不同轨道杂化方式的碳同素异形体所表现出来的
黑磷具备可调的直接带隙以及较高的载流子迁移率,弥补了石墨烯和过渡金属硫化物的不足,受到研究者的广泛关注。然而,黑磷在自然环境中却因易降解而限制了其在某些领域的应用。金属原子吸附是在不破坏黑磷固有优异性能的情况下,实现黑磷环境热稳定的最有效策略。过渡金属Fe原子吸附在黑磷表面,不仅可以有效提高黑磷的环境稳定性,同时也进一步丰富了黑磷的电子性质,而通过施加应变可以进一步调控吸附体系的电子结构。基于稳定
光电化学(PEC)分解水可以通过利用半导体材料将太阳能转化为氢能(H2),是解决化石燃料枯竭和环境污染等问题切实可行的途径。赤铁矿(α-Fe2O3)具有合适的带隙宽度(1.9-2.2 e V)、制备成本低廉以及光电化学稳定性良好等诸多优点,是极具发展潜力的光阳极半导体材料之一。然而其自身固有的一些缺陷严重限制了其在光电化学分解水中的实际应用。α-Fe2O3较差的本征电导率导致了它体内光生载流子的迁
近些年随着电脑、智能手机等电子设备的普及,每秒所需传输的信号量日益增长,对信号的传输速度即带宽提出了新的标准;同时,便携式电子产品对功耗、面积有了更高的要求。传统的一些接口技术逐渐无法满足要求,急需一种传输速度更快的接口技术来完成现在的数据传输。作为一种新兴的高速信号传输技术,低差分电压信号(LVDS)技术采用低摆幅差分信号传输数据,连接方式有点对点或点对多点以及双向传输,相较于数字和模拟的信号传
混沌动力学与人工神经网络的结合是当前研究的热门领域之一,其中复合吸引子的构建与预测是一个新颖且具有挑战性的方向。一方面,与单一类型的吸引子相比,复合吸引子具有更高的复杂度和更为丰富的动力学行为,从而在加密领域具有广泛的应用前景。然而,产生复合吸引子的混沌系统(以下简称复合混沌系统)结构往往较为复杂,并且构建这种系统始终缺少一种简单且通用的方法。另一方面,近期许多工作均指出对于混沌系统产生的自激或隐