论文部分内容阅读
传统的建筑集中式系统采用分层架构,子系统各成体系,造成了组网调试、升级改造、机电设备互联互通困难等问题,严重阻碍了跨系统功能的实现。相比于传统的建筑集中式架构,群智能作为一种新型的建筑运行管理系统,采用的分布式架构去掉了中央监控主机,使得整个系统更加扁平,而作为建筑的重要组成部分,机电设备的互联互通是实现建筑群智能控制的关键。本文通过将计算处理节点(Computing Process Node,CPN)嵌入建筑电气设备对其进行改造升级,统一规范了电气设备的对外接口形式,并将一种改进的负荷预测算法植入电气设备中,将其升级为群智能电气设备。针对群智能建筑中电气设备的标准化描述问题,本文首先研究了电气设备标准信息模型的编制方法,从控制需求角度将电气类机电设备划分为七类,选取其中的配电箱作为典型代表,建立了配电箱这一大类的标准化信息模型,然后着重研究了配电箱与CPN的接口特性,为实现配电箱与CPN的信息交互提供了理论基础。为了分析设备的能耗水平,需要在电气设备中集成负荷预测功能。本文又分别研究了循环神经网络(Recurrent Neural Network,RNN)、长短期记忆网络(Long Short Term Memory,LSTM)以及添加Attention机制的长短期记忆网络(Attention Long Short Term Memory,Attention-LSTM)的数学模型,并使用PyCharm编辑器对上述神经网络进行建模,结果表明Attention-LSTM较其他两种网络具有更高的预测精度,验证了所提出算法的有效性。然后,为实现配电箱与CPN的接口对接,本文研制了基于STM32F407芯片控制的协议转换装置,着重分析了转换装置硬件和软件的设计过程,给出了将神经网络部署在STM32嵌入式中的方式。最后,基于配电箱的标准信息模型以及AttentionLSTM负荷预测模型,实现了配电箱与CPN的信息交互。