【摘 要】
:
近几年来,随着过渡金属催化方法在有机合成方面的广泛应用,过渡金属催化剂得到了越来越多的关注。铑金属络合物在碳碳键形成上的广泛应用使其在有机合成上扮演越来越重要的角色
论文部分内容阅读
近几年来,随着过渡金属催化方法在有机合成方面的广泛应用,过渡金属催化剂得到了越来越多的关注。铑金属络合物在碳碳键形成上的广泛应用使其在有机合成上扮演越来越重要的角色,尤其是铑催化的环加成/环化反应在构建多元碳环和杂环化合物方面有着不可替代的作用。我们对铑催化的环庚三烯与取代的苯乙炔的[6+2]环加成反应进行了研究,并通过该环加成反应以较高的收率得到相应的取代二环化合物。通过条件的优化筛选,发现以[Rh(cod)Cl]2(5%mol)为催化剂,PPh3(10%mol)为配体,CuI(10%mol)为添加剂在120oC下以二甲苯做溶剂的催化体系为最优条件。实验数据表明,电子效应和空间效应对该反应起到关键作用。同时,我们通过计算模拟对反应机理进行了深入研究。烯烃复分解反应(olefin metathesis)是由金属烯烃络合物(又称金属卡宾)催化的不饱和碳碳双键或者叁键之间的碳-碳架重排反应。由于烯烃复分解反应具有反应条件温和、产率较高的特点,而且绝大多数的有机基团在这一反应中无需保护,几乎不受空气以及潮湿环境的影响,近年来该反应受到了学术界和工业界的广泛重视。钌催化剂的发展,大大地促进了烯烃复分解反应在聚合物化学、有机合成化学和绿色化学等领域中的应用。我们通过在手性催化剂中引入位阻较大的配体从而改变手性钌催化剂空间位阻以提高催化剂的选择性和活性。
其他文献
纳米多孔材料由于具有良好的物理化学性能、化学稳定性、电学性能和高催化活性,在纳米反应器、能量存储、太阳能电池、驱动器、超滤分离、CO2捕集、电池成像、药物分离等高新技术领域有广泛应用。同一般的棒状和球状多孔材料相比,纳米片多孔材料具有改进的催化性能。目前,纳米片多孔材料的合成方法较为繁琐,往往需要采用模板。因此,需要发展一种简单且普适的方法来合成纳米片多孔材料。化学转化法因其可将一种纳米材料转变成
如今随着科技的迅猛发展,与人类息息相关的衣、食、住、行也都较之前发生了质的飞跃,但是在这些物质变化的同时,也催生出了威胁人类生命安全的添加剂、色素、杀虫剂等有毒害的化学制剂,这就使人们对于自我保护的意识增强,越来越关心生存环境及食品安全的问题,因此各种检测设备及测试方法、手段应运而生。对于样品中痕量重金属元素的测定,有时需达到如ppb这样高灵敏度级别的要求,单就目前应用于实际生产工作中的较高灵敏度
含氮羧酸类配体由于具有丰富的配位模式和较强的配位能力而被广泛应用于配合物的合成中。本论文利用水热和溶剂热方法以2,2-二氟-2-吡啶基乙酸乙酯(Efpa)、4,5-咪唑二羧酸(H3
亚胺即Schiff Bases,是一类分子中含有碳氮双键的化合物。亚胺类化合物具有很好的配位能力,能与多种金属离子形成金属配合物。亚胺类化合物及其金属配合物具有抗氧化、抗肿瘤、抗病菌、耐高温等性质,因此在医药、农药、化学以及功能材料等领域都有着重要的应用。目前,国内外关于位阻较大的亚胺的合成方法的研究报道较少。已有合成方法一般都不能通过酮与胺的直接缩合反应制得相应的亚胺,而且具有反应时间长、反应温
分别利用氧化技术和水热法合成两种窄带光催化剂NaBiO3·2H2O和NaBiO3·xH2O。对光催化剂的结构和性能进行了表征。通过研究可见光下的光催化氧化罗丹明B来评价光催化活性。
铝盐水解产物的形态化学对地球化学、土壤化学和环境化学等众多学科领域都起到十分重要的作用,但是由于铝盐水解过程和溶液中各种聚铝形态分布的复杂性,使得从中离析纯聚铝化合物变得很困难,而生长出适合结构分析的单晶更难,导致聚铝形态结构信息严重短缺,无法对铝盐水解聚合过程和形态演变规律达成统一认识。为制备更多聚铝化合物获得更多聚铝形态的结构信息,本课题组经过十多年的摸索,形成了相图控制与形态捕捉相结合制备聚