【摘 要】
:
图像配准是建立同一场景的图像之间的对应关系,在计算机视觉、医学图像处理、材料力学以及遥感等领域有广泛应用。单应矩阵估计是图像配准任务中的关键问题。由于实际成像系统存在几何畸变,线性仿射变换模型不准确,匹配对点坐标构成的是矛盾方程,因此传统方法对于单应矩阵估计并不可靠。深度学习提取大样本的内在规律和多尺度高维特征,通过数据驱动的方式拟合出更可靠的估计模型。在图像配准任务中,光照变化、实际数据缺少标签
论文部分内容阅读
图像配准是建立同一场景的图像之间的对应关系,在计算机视觉、医学图像处理、材料力学以及遥感等领域有广泛应用。单应矩阵估计是图像配准任务中的关键问题。由于实际成像系统存在几何畸变,线性仿射变换模型不准确,匹配对点坐标构成的是矛盾方程,因此传统方法对于单应矩阵估计并不可靠。深度学习提取大样本的内在规律和多尺度高维特征,通过数据驱动的方式拟合出更可靠的估计模型。在图像配准任务中,光照变化、实际数据缺少标签和深度网络模型复杂度都是基于深度网络图像配准的挑战。针对图像匹配光照变化的问题,在非对称卷积对的基础上构建了一种新的级联特征模块,该网络单元提高了特征维度,增加了在光照变化等复杂条件下提取特征的能力。针对前一网络全连接层参数复杂度高训练收敛慢的问题,提出采用联合注意力机制网络替代全连接层,利用注意力机制自动学习坐标偏移方程,通过移除全连接层减少参数,并且提高了深度配准网络的拟合精度。针对现实场景图像数据具有光照、多视角、缺标签等问题,基于前述网络提出一种弱监督学习方法。利用传统无监督算法估计无标签图像对的单应矩阵训练网络,基于图像对的坐标偏移量和重投影像素差构建了一个复合损失函数,实现了基于无标签现实场景图像集的弱监督学习。在基于MSCOCO和ICDAR 2019-LSVT自生成数据集以及Hpatches数据集和光照数据上验证了上述模型的鲁棒性。与主流的深度图像匹配算法比较,所提出的模型在参数规模和估计精度方面都体现出了优势。
其他文献
随着社会经济地大步向前发展,人们对能源的需求也越来越大。社会上常用的化石能源,会导致严重的环境污染问题,与建设低碳环保型社会背道而驰。但是目前新型清洁能源的转换技术并不成熟,因此提升能源的利用率、合理利用能源是缓和这一矛盾的有效方法。而电能是社会上应用最广泛的二次能源,节约用电是一种行之有效的节能方法。智能电网通过向供电方与用电方提供各方面详细的用电信息,可以让供电方根据需求及时合理地安排电能供应
在大数据时代,增量变化是一种常见的动态数据形式,如何从具有强不确定性的大规模动态数据中获取有价值的信息,是大数据领域最重要的研究内容之一。三支决策是一种适用于解决不确定决策问题的理论。该理论与粗糙集理论中的集合正域、负域和边界域概念相对应,对应有接受决策、拒绝决策和延迟决策。其中三支决策属性约简在近些年得到了广泛关注和研究。现有的三支决策属性约简算法大多面向所有决策类,在只需获取单个特定类属性约简
随着全球环境污染形势日益严峻,能源短缺问题日益突出,继续以高投入、高消耗、高污染的粗放型发展方式将制约制造业长远发展。实现绿色制造、低碳发展是企业转型升级的必然选择。在绿色制造背景下,如何在企业内部总生产能力不变的情况下,充分利用车间资源,处理好生产中生产效率和能量效率之间的矛盾,协同优化经济指标和绿色指标,开展节能调度成为制造企业绿色发展的关键抉择。与此同时,随着工业4.0浪潮的兴起,制造企业逐
深度估计信息对于自主系统感知环境和估计自身状态非常重要。随着人工智能技术的不断发展,从图像中估计场景深度已经取得了巨大的研究进展。近年来,基于深度神经网络的单目图像深度估计研究成为热点,它们使用深度采集设备进行有监督训练或者利用立体图像对进行无监督训练,从而估计出场景的深度。然而,监督学习深度估计方式由于数据的采集即耗时又昂贵,且相对于相机视图特征信息也是稀疏,而无监督深度估计的精度受到立体重建精
行人再识别(Re-ID)技术一直是计算机视觉和模式识别领域的关键任务。一般将该技术视为图像检索的子集,行人再识别是一种特定的识别技术,其旨在给定特有行人在跨摄像头视频或图像中定位该特定行人。该技术通常结合人脸识别、行人追踪等技术,结合应用于视频监控和智能安防领域。在基于伪标签预测的跨域行人再识别方法中,模型的性能较大程度上依赖于伪标签的质量,并且聚类产生的离群点包含了丰富的知识。急需解决的一个问题
随着科技的发展,人工智能的应用越来越广泛。当前,我国各超市蔬菜的购买、称量、结算过程中,时刻需要人工的参与;我国农产品品质优良、产量大,这也给农产品的市场管理带来了严峻的挑战。目前商户在蔬菜的交易过程中仍采用传统的人工分拣方式,这种方式会消耗大量的劳动力,增加劳动强度,影响经营成本。为了改善此状况,研究设计出一套蔬菜图像识别系统,帮助农民、蔬菜商家对蔬菜进行检测,进而完成分类、称量、结算等任务,这
农作物病害是影响农业经济作物产量和质量的主要危害之一。如何在农作物病害出现之初就能够对病害进行及时的检测与识别,提前防治病害,对农业生产丰收有着至关重要的作用。传统的病害识别方法完全依赖个人的工作经验和肉眼观察,具有识别效率低、主观性强、准确率低以及实时性差等不足。随着信息化技术的不断发展与提高,运用技术手段来辅助开展农作物病害检测与识别成为了一个迫切需求。近年来,深度学习技术方法凭借着其出色的泛
随着《中国制造2025》的全面实施,中国工业现代化进程稳步推进,智能制造已成为研究热点。机床工作过程中产生的切削颤振是制约高性能加工的一个关键问题,会导致工件表面光洁度下降,并且加速刀具磨损,降低机床寿命、可靠性和加工操作的安全性,造成加工成本提高。针对此问题,本文将一种基于深度学习的算法应用于切削颤振在线监测领域,并研发了一套基于神经网络处理器的嵌入式切削颤振在线监测系统。首先,研究了切削颤振在
真空离子镀膜设备是一种处理表面工程技术的设备,被广泛运用于各个领域之中。镀制薄膜的厚度精度是评价设备性能好坏的关键指标,而设备中的膜厚监控系统的控制性能直接决定了镀膜薄膜的厚度精度。目前,在镀制非规整膜系时,普遍采用基于晶体式膜厚监测仪的膜厚控制系统,由于使用的算法较为简单,导致镀膜的薄膜精度不高。因此,将智能算法运用于真空离子镀膜设备中的膜厚控制系统,对提高镀制薄膜的精度和质量,具有广泛的运用前
太赫兹传感技术具有可靠、快速、无标记等优势,在生物传感领域中具有巨大的应用前景与价值。然而当被测样品尺寸远小于太赫兹波长时,样品不能与太赫兹充分地相互作用,这导致原位太赫兹光谱对微量分析物的检测极其困难。超材料是由周期性排列的亚波长谐振单元组成的人造材料,其电磁响应可以通过改变谐振单元的形状、尺寸等参数控制。超材料能通过局域电场增强以提高光与物质相互作用的程度,因此超材料具有出色的检测能力。石墨烯