论文部分内容阅读
随着汽车保有量的不断攀升,节能和安全已经成为汽车发展所面临的重大挑战,而汽车轻量化技术及其结构耐撞性设计也成为目前应对挑战的重要技术手段。考虑到汽车轻量化设计与结构耐撞性之间的矛盾和竞争关系,国内外学者与研究机构普遍希望将结构碰撞拓扑优化方法应用于汽车产品开发与概念设计中,以期在实现汽车结构轻量化设计目标的同时满足碰撞安全性要求。然而,汽车结构碰撞拓扑优化属于典型的结构非线性动力学响应拓扑优化问题,是最复杂的优化问题之一,现阶段尚没有形成一种公认有效的优化方法。基于等效静态载荷的结构优化方法能够充分利用线性拓扑优化理论的高效率优势和现有成熟商业软件的计算优势,得到了广泛的研究和应用。然而,该方法在解决结构大变形碰撞拓扑优化问题时同样存在计算效率和数值稳定性等亟待解决的问题,影响其进一步发展和深入技术应用。本文针对基于等效静态载荷的结构优化法在解决结构碰撞拓扑优化问题时存在的计算成本高、优化效率低和数值不稳定等问题,提出相应的解决措施及改进方法,并通过简单结构设计实例验证了改进方法的优越性。在此基础上,将所提出的方法推广应用到某纯电动汽车前端系统正面碰撞工况下的关键结构拓扑优化设计中,建立了一种行之有效的汽车结构轻量化和耐撞性优化设计方法,实现了汽车结构耐撞性和轻量化水平提升,验证了本文所提方法的工程应用价值,同时为汽车结构耐撞性和轻量化设计提供了一种全新思路和实用方法。本文主要开展的研究工作及得出的相关结论如下:(1)从结构碰撞拓扑优化方法研究和应用研究两个方面对碰撞拓扑优化领域的国内外研究现状展开了综述,在此基础上对当前结构碰撞拓扑优化方法和应用技术的特点进行了分析和对比,并对这些领域存在的共性关键问题进行了总结,明确了本文的研究方法和应用领域并据此对论文组织结构及技术路线和各章节的内进行了介绍。(2)详细阐述了基于等效静态载荷的结构优化法驱动碰撞拓扑优化的完整过程和相关理论,系统总结了基于等效静态载荷的结构优化法在解决大变形碰撞拓扑优化问题时存在的问题和不足,深入剖析了导致这些问题和不足的原因,为后续开展等效静态载荷的改进研究奠定了理论基础。(3)针对基于等效静态载荷的结构优化法在解决碰撞引起的结构塑性大变形拓扑优化问题时存在的计算成本高、优化效率低的问题,基于模型降阶理论对等效静态载荷进行改进,并提出了一种降阶等效静态载荷计算方法及基于降阶等效静态载荷的结构碰撞拓扑优化法,保留了等效静态载荷法的全部优点,避免了等效静态载荷作用在所有节点上以及整个模型参与碰撞分析和拓扑优化,从而有效降低了碰撞拓扑优化的计算成本、提升了优化效率,并通过简化的车身结构正面碰撞拓扑优化验证了该方法的优越性。(4)针对基于等效静态载荷的结构优化法在解决碰撞引起的薄壁结构塑性大变形拓扑优化问题时存在的数值不稳定问题,基于线性极限分析的思想和能量原理对等效静态载荷进行改进,提出了一种等效线性静态载荷计算方法并在此基础上提出基于等效线性静态载荷的结构碰撞拓扑优化法,实现了等效线性静态载荷的自适应缩放,保证了等效静态载荷作用下的结构拓扑优化始终保持在线性范围内,有效提高了结构碰撞拓扑优化的数值稳定性。最后将该方法应用于大变形碰撞工况下的吸能盒诱导结构优化设计,拓展了拓扑优化方法的应用范围,验证了该方法的有效性。(5)以某纯电动汽车的前端系统为研究对象,首先建立了该车前端系统正面碰撞有限元仿真模型并通过实车正面碰撞试验验证了有限元仿真模型的正确性和可靠性;然后在此基础上对该系统的碰撞安全性和碰撞特点进行了详细分析,确定影响正面碰撞安全性的关键结构及其存在的问题;接着将本文所提出的两种基于改进等效静态载荷(降阶等效静态载荷和等效线性静态载荷)的结构碰撞拓扑优化法综合应用到关键结构的碰撞拓扑优化中,建立了一种有效的汽车结构轻量化和耐撞性优化设计方法,实现了关键结构耐撞性和轻量化优化设计;最后,通过有限元模型重构将优化后的关键结构集成到原前端系统中,形成了优化后的前端系统正面碰撞仿真模型,并在相同条件下通过再次进行有限元碰撞仿真分析对比验证优化结构的有效性和本文提出的优化方法的工程应用价值。结果表明,运用所提出的结构碰撞拓扑优化方法可以在保持整车质量基本不变的情况下,实现正面碰撞工况下前端最大变形量减小13.31%,平均碰撞力和碰撞力效率分别增加15.51%和7.89%,有效兼顾了汽车结构轻量化和耐撞性设计要求。论文研究结果表明,本文提出的基于改进等效静态载荷的结构碰撞拓扑优化方法可以有效平衡结构的轻量化和耐撞性、节约计算资源、提高数值稳定性,为汽车结构耐撞性和轻量化设计提供了一种全新思路和实用方法。论文建立的结构优化设计方法,有效解决了结构耐撞性和轻量化设计技术难题,为开展汽车结构轻量化和耐撞性设计提供了一种行之有效的技术路径。