论文部分内容阅读
复合驱油技术是一种大幅提高采收率的手段,矿场试验表明,对比水驱,强碱三元复合驱的增油控水效果明显,与水驱相比可提高采收率20%以上。伴随着强碱三元复合驱替体系注入地层,其与地层流体以及岩石矿物发生物化反应,打破了原流体和岩石矿物间的物化平衡状态,使得地下流体中离子组成和含量发生变化,最终产生结垢现象,导致储层部分孔隙堵塞,影响了波及效率和驱替效率,降低了采收率;同时随着含垢地层流体的运移造成采出井举升设备生产运行中常发生螺杆泵杆断、泵漏失以及抽油泵频繁卡泵等故障,严重威胁原油开采的正常进行。因此,预测储层结垢类型与结垢趋势成为有效实施清防垢作业的保障。目前,基于物化模拟与智能预测的结垢预测方法应用推广效果不佳,主要原因一是预测涉及的不确定性因素太多、规律性差,采用传统或人工预测方法困难;二是部分采用智能预测方法训练过程复杂,对环境要求高,泛化能力弱,可移植性差,预测结果准确率较低。针对上述问题,本文选用杏树岗油田北部开发区为试验区,通过分析试验区储层地质特征、流体性质、油水渗流特征以及油田水离子变化趋势,为后续开展储层油田水结垢预测提供推理知识;研究解决关键科学问题的相关技术,设计适用于动态结垢预测的智能知识推理模型,有效解决现有方法预测准确率低、可移植性弱、动态更新能力差、缺少时序预警等问题。重点研究内容如下:1.构建了基于数据挖掘的结垢预测模型(SASP-DMSP)为了克服结垢预测知识库可移植性差、动态更新能力弱、缺少时序预测知识等不足,设计基于数据挖掘的结垢预测模型(SASP-DMSP),作为解决智能预测问题的总体方案,提高结垢预测的准确率以及结垢预测知识库的推理能力。设计模型框架包括知识获取层、知识建模层与知识推理层三层。知识获取层为模型的基础层,主要实现结垢预测知识的获取与知识库的智能训练,同时加入训练学习模块,实现知识库的动态更新;知识建模层为模型的中间层,采用本体建模技术为结垢预测作业提供一套规范的领域公共本体与知识组织体系;知识推理层为模型的应用层,三层协作通过推理与表达最终完成结垢预测。2.实现了基于本体的结垢预测知识建模针对结垢预测模型语义表达能力弱、可移植性相对较差的问题,研究基于本体的结垢预测知识建模。通过对储层结垢预测领域系统、机理与专家经验知识的分析与抽象,建立储层结垢预测知识模型核心本体与知识的标准语义,为结垢预测知识库提供知识内容、组织结构以及表示方法。采用Protégé作为本体建模工具进行推理、诊断,验证所提方法的有效性。3.研究了基于数据挖掘的结垢预测知识库训练方法为了填补经验知识的漏失,基于油田积累的大量历史数据,利用智能挖掘技术训练储层结垢预测相关数据,将在学习训练中发现的新知识添加到结垢预测知识库中,实现知识库的动态更新。针对结垢预测规则描述不完整,阈值设定不精确、单一结垢预测模型在储层物性差异下导致预测准确率较低的问题,设计组合分类模式挖掘方法,主要包括物性分类与模式挖掘两部分。物性分类阶段主要生成独立训练样本子集;模式挖掘阶段通过训练样本子集获取分配只是并更新结垢预测知识库,实现油田不同储层物性条件下的结垢预测。在模式挖掘过程中为适应训练数据的模糊、混合、不完备特性,设计基于混合不完备邻域决策系统和离散粒子群(Discrete Particle Swarm Optimization Algorithm,简称DPSO)的特征选择方法,提高历史数据利用率与特征选择准确率。针对储层结垢预测缺少时间序列下趋势性预测知识,同时时间序列历史数据具有周期性与混沌性的问题,提出储层结垢时序趋势预测方法。以时序数据中具有代表性的六项离子化验数据为例,采用回声状态网络技术,设计基于目标空间分解的多目标粒子群(MPSO/D),训练、获取时序预测知识,实现结垢趋势预警。4.设计并实现了用于验证结垢的预测系统以SASP-DMSP模型为理论指导,设计复合驱结垢预测系统,该系统由基于本体的结垢预测知识管理系统、结垢预测数据集成系统以及结垢预测与清防垢管理系统三个子系统组成,子系统间协同作业,实现储层智能结垢预测。将其应用于试验区,通过专家验证与运行结果数据测试,表明系统应用能够实时、有效的实现动态结垢预测。研究结果表明,基于数据挖掘的强碱三元复合驱储层结垢智能预测方法能够提高结垢预测准确率、结垢知识的更新能力与预测系统的可移植能力。同时,通过延展研究和分析,该方法为处理此类业务应用问题与知识推理问题提供了解决方案。