论文部分内容阅读
以石墨烯为代表的二维层状材料因其优良的力学、光学、电学特性,在材料、信息、光电、能源等领域内迅速发展,是当前研究的热点领域之一,为科学技术的应用提供了新的材料基础,这极大地激发了人们对二维材料性能的探索和应用的开发。非线性光学是随激光技术的发展而出现的新的光学领域,主要研究光和物质在相互作用的过程中产生的新现象及其规律。随着非线性光学的发展,非线性光学材料也逐渐从宏观材料发展到微观材料,对二维材料的非线性光学特性的研究成为新兴的研究方向。基于非线性光学材料的饱和吸收特性制作的可饱和吸收体是脉冲激光器的关键部件。随着激光器向短脉冲、高能量、可调谐方向发展,对非线性光学材料的要求也越来越高,传统非线性材料因其恢复时间慢、工作带宽窄、集成复杂等缺点极大限制了脉冲激光器的发展。因此人们将目光转移到具有超快响应时间、宽带非线性吸收、低损耗、低成本、易兼容的二维非线性光学材料。关于二维材料非线性光学特性的研究及其在固态激光器的应用对可饱和吸收体的制备和脉冲激光器的性能提高具有重要的指导意义和实用价值。本文针对氮化碳材料、一元类金属单质、二元Ⅳ族金属硫化物、三元Ⅳ-Ⅵ族半导体等纳米材料和CrOCl二维晶体的三阶非线性光学特性进行了研究,测量了材料的三阶非线性光学参数,发现了其多波段的非线性吸收规律。并利用一元、二元、三元纳米材料及CrOCl晶体的宽带饱和吸收特性,实现了多种波长的调Q脉冲激光输出,分析了不同类型材料在不同波长的脉冲光输出特性、规律及原因。主要内容如下:1.实验研究了氮化碳材料g-C3N4和F-C3N4在可见光波段和近红外波段的三阶非线性吸收和折射随入射激光强度、激光波长、样品浓度改变而发生变化的规律。发现了其在可见光波段的优良的饱和吸收特性。利用激发态非线性吸收理论解释了其在近红外波段由饱和吸收向反饱和吸收转变的特点。通过对比分析发现,由于氟原子的引入,F-C3N4纳米片共轭体系被部分破坏,导致带隙增大,饱和吸收减弱,反饱和吸收增强。2.实验发现了一元类金属纳米材料锑烯、硅纳米片、硼纳米片在532和1064 nm的饱和吸收性能,获得了饱和光强和调制深度等参数。通过平凹激光谐振腔实现了波长为0.9、1.06、1.34 μm的全固态被动调Q脉冲激光输出。一元纳米材料在短波长具有较强的非线性吸收,在短波长调Q实验中获得了较稳定的脉冲输出。其中少层锑烯具有接近0 eV的带隙宽度,其饱和吸收性能较强,调Q输出激光参数更佳。3.实验研究了二元Ⅳ族纳米材料SnSe2、SnTe2、SnSe在0.5-2.0μm范围内的饱和吸收特性,得到了材料的非线性吸收系数、饱和强度、调制深度等参数,其中SnSe2的非线性吸收系数较大,饱和强度较低,饱和吸收性能较好,更有利于调Q激光的输出。利用三种材料的饱和吸收性能,在0.9-2.0 μm的范围内实现了多种波长的全固态被动调Q脉冲激光输出。结果分析显示这几种二元材料的本征吸收对其调Q性能有明显的影响,在短波长波段的本征吸收更强,调Q激光性能更优。同时其随波长减小而增大的饱和吸收特性也对短波长的激光调制有积极的贡献。4.实验研究了三元纳米材料PbSnS2纳米片的非线性吸收特性。利用其宽带非线性吸收特性,搭建了 1.06、1.3、1.87 μm的全固态被动调Q激光器。由于其在短波长更强的本征吸收和非线性吸收,导致其在短波长的调Q实验结果更优。5.通过密度泛函理论和实验研究了二维CrOCl晶体的电学和光学特性,证实了其具有1.4 eV的带隙宽度。线性光学测试发现其具有0.8-18 μm的超宽透过波段。Z扫描实验验证了其在1.06-2.5 μm范围内具有宽带饱和吸收特性和较高的损伤阈值,并将其应用在调Q激光器中,搭建了多种波长的被动调Q器。结果表明,CrOCl晶体是一种具有巨大潜力的红外波段非线性光学材料。