论文部分内容阅读
能源紧缺、环境恶化是当今世界面临的主要问题。发展清洁、可再生的能源成为人类迫切需要解决的问题。直接乙醇燃料电池可将化学能转换为电能且排放少量的,主要应用于电子便携式设备、便携式辅助充电器和运输工具。直接乙醇燃料电池吸引了越来越多的关注,主要是由于其燃料能量密度高、便于储存和运输、可再生性。尽管,直接乙醇燃料电池具有较大的商业化潜力,但其动力学反应缓慢,严重阻碍了乙醇燃料电池的发展。所以,乙醇燃料电池的发展面临巨大的挑战,要想提高乙醇燃料电池在碱性介质中的催化氧化反应,关键在于发展高活性、高稳定性、经济廉价的乙醇燃料电池阳极催化剂。目前,乙醇燃料电池的阳极催化剂主要以Pt基或Pd基催化剂为主。然而,低活性、弱耐久性、低选择性和较高的材料制备成本限制了Pt基或Pd基催化剂的发展。为了解决以上问题,开发并实施了一些改进策略,合成多组分或纳米组分的复合催化剂。让Pt或Pd与过渡金属进行合金化,主要通过调节电子结构和优化催化剂表面吸附能来改善催化剂的催化性能;通过让Pt或Pd与过渡金属氧化物或氢氧化物混合,构建协同催化剂来提高催化剂的催化活性。研究发现,两种策略都能有效地提高催化剂的催化活性和稳定性。所以,在设计高效的阳极催化剂时我们采用协同催化和纳米工程策略的组合来同时解决Pd的内在活性和利用效率问题。从而降低贵金属Pd的使用量,最大限度的提高其利用率。本文从高效、高稳定性、价格低廉的乙醇燃料电池阳极催化剂的设计出发,制备了不同组分、结构的Pd基催化剂,并深入研究了催化剂的结构特征和电化学性能。本文工作包括以下几个部分:第一部分,采用简单的葡萄糖辅助水热和电化学还原两步法制备了复合催化剂。该催化剂中Pd的纳米颗粒粒径约为3.5 nm,且均匀的分布在催化剂的表面上。研究结果表明,纳米片的引入可以促进水的解离,生成-OHads活性组分,-OHads活性组分与邻近的活性贵金属Pd纳米颗粒发生协同催化作用,提高了催化剂的催化性能。另外,控制纳米片的形貌是合成高性能的乙醇燃料电池阳极催化剂的重要步骤。连续进行2000圈循环稳定性测试后,活性仍然保持89.6%。连续进行长达5000 s的计时安培测试后,催化活性能够保持5%,且催化剂的形貌保持良好。第二部分,采用简单的三步法制备了高分散的纳米结构的复合催化剂。Pd颗粒粒径大约为3 nm,均匀的分布在催化剂表面。的引入提高了催化剂的催化活性和稳定性,其原因有三个:一是,暴露了更多的有效活性位点,有利于传质动力学的进行;二是,提高了催化剂的导电性;三是,能够促进水的解离,生成-OHads活性组分,-OHads活性组分与邻近的Pd纳米颗粒发生协同催化作用促进了含碳中间产物的氧化脱附,提高了催化剂的催化性能。连续稳定性循环2500圈循环稳定性测试,电化学活性保持80.4%。连续进行10000 s的计时安培测试后,电流密度保持原来的6.7%。耐久性测试后的催化剂形貌保持良好且物相保持不变,说明具有较好的稳定性。第三部分,采用简单的三步法制备了高活性和高稳定性的3D多孔的微米花结构的复合催化剂Pd/Ni Fe P/NF。研究发现,过渡金属磷化物Ni Fe P的引入,增加了有效活性位的数量,增强了传质动力学和提高了催化剂的导电性。另外,Ni Fe P与Pd的相互作用改变了Pd的电子态,对催化剂的催化性能有促进作用。其中Fe元素的引入是微米花结构形成的关键,还进一步提高了催化剂的本征活性和导电性。电化学测试结果表明,Pd/Ni Fe P/NF复合催化剂具有大的电化学比表面积,较高的导电性和较强的抗CO中毒能力。连续稳定性循环2500圈循环稳定性测试后,电化学活性保持81.7%。连续进行20000 s计时安培测试后,电流密度保持原来的27.2%。对耐久性测试后的样品进行了场发射扫描电镜测试,结果显示,催化剂的形貌保持良好,进一步说明催化剂具有良好的稳定性。