论文部分内容阅读
过去几十年,冷原子物理研究给原子分子和光物理领域带来了革命性的发展。同样,正在蓬勃进行的冷分子研究将给原子分子和光物理的发展提供新的契机。跟原子相比,分子具有更丰富的结构和更多的自由度。正是分子的这些丰富而独特的结构使新物理现象和新发现的研究成为可能。利用冷分子和超冷分子,人们可以探索很多新的领域,包括高分辨光谱学、精密测量、冷碰撞、多体物理、量子计算等。本文主要致力于中性极性分子的静电Stark减速实验研究与冷分子的囚禁新方案研究,主要研究内容和创新点如下。NH3分子是物理化学中非常重要的研究对象,在冷碰撞、精密测量和微波频率标准等领域有着广泛的应用。为此,我们开展了NH3分子的静电Stark减速实验研究。利用179级传统静电Stark减速系统,在传统运行模式下,我们将NH3超声分子束从333 m/s减到了18 m/s,制备出了可装载和囚禁的NH3冷分子波包,为后续的冷碰撞和高分辨光谱研究提供了基础。为了进一步提高冷分子束的能量分辨率,我们采用一种新的减速器运行模式即先减速后聚束模式将减NH3冷分子波包的纵向速度分布宽度压窄至2.8 m/s,对应的纵向温度仅2.9 mK,比传统运行模式下的冷分子温度低了一个数量级,这类速度可控的高能量分辨率的冷分子束为后续的冷分子碰撞研究提供了理想样品。虽然传统静电Stark减速器可以实现一些分子的有效减速,但它的减速效率比较低;对于在物理化学和精密测量领域具有重要应用价值的小电偶极矩分子和重原子分子,传统减速器无法实现它们的有效减速。为此,我们开展了新颖的环形Stark减速器的实验研究。环形减速器采用环形减速电极和直流高压,克服了传统减速器的固有缺陷,具有跟先进的行波减速器一样突出的优势,但比行波减速器更容易实现和操控。我们论述了环形减速器的基本原理,介绍了环形减速器的加工、准直、高压老练和时序控制。在实验上,我们观察到了ND3分子在环形减速器中的导引和聚束信号。这些研究工作将推动Stark减速技术的发展。Stark减速后的冷分子可以囚禁在静电阱中,分子囚禁是很多后续研究和重要应用的基础。为此,我们提出了两种新颖高效的静电阱方案以及针对脉冲极性分子束的多次装载方式。我们对两种静电阱在不同装载方式下的装载和囚禁过程进行了蒙特卡罗轨迹模拟,结果表明新静电阱可以对Stark减速后的冷分子进行高效的单次装载和多次装载。囚禁分子的数量是进行协同冷却或蒸发冷却的前提,高效的静电阱为超冷分子甚至分子玻色-爱因斯坦凝聚的制备提供了基础。冷分子还可以囚禁在芯片表面的微势阱中,微势阱中的极性冷分子可用作量子比特或分子寄存器,为实现量子计算提供了新的平台。为此,我们提出了首个针对极性分子的芯片上的二维移动静电晶格方案。详细介绍了二维移动静电晶格的设计方案和操控原理。模拟了二维静电晶格的装载、减速和囚禁过程。数值模拟结果显示,该静电晶格能在几厘米内将超声分子束减速至零,并且能使晶格内的分子波包在芯片上方平滑的前后移动,可用作分子移位寄存器,可对两种不同分子进行同时减速和同时囚禁。因此,芯片上的二维移动静电晶格在量子计算及冷分子碰撞研究中具有重要的应用价值。