论文部分内容阅读
近年来,我国社会经济高速发展,城市规模逐渐扩大,伴随而来的是城市中的机动车数量的快速增加,由此造成道路拥堵、交通事故频发、汽车尾气排放污染环境等一系列问题。解决这些问题的关键途径是提升路网的通行能力,通过减少车辆在交叉口的延误时间来提高城市路网的通行效率。在以上背景下,本文设计并实现了三种城市单交叉口的交通信号控制方法,并通过二次开发Sumo仿真软件进行对比分析。(1)设计与实现一种交通灯信号的模糊控制方法。该方法基于四相位定相序对单交叉口交通灯进行控制,采用两层模糊控制系统,第一层模糊控制系统输入为车辆排队数和车辆到达率,输出为当前相位和下一相位交通流强度。第二层模糊控制系统以两个相位的交通流强度作为输入,输出为当前绿灯相位的绿灯延长时间。实验结果表明该方法的控制性能优于Sumo仿真软件自带的定时控制方法与传统模糊控制方法。(2)利用遗传算法来优化模糊控制系统。将模糊规则和隶属度函数参数编码为染色体,以车辆平均等待时间等评价指标构建适应度函数。种群迭代过程中,将个体解码为模糊控制系统的规则和隶属度函数参数,然后利用仿真软件对个体代表的控制系统进行仿真,得到个体评价函数值。在选择过程中加入了精英保留策略来保证最优个体不被破坏。经过遗传算法优化后,模糊控制系统控制交通信号灯的性能得到明显提升。(3)利用强化学习方法解决单交叉口交通信号灯控制问题。该方法充分利用路网传递的交通流参数,将路网截取为位置、速度矩阵,并将其作为输入状态。采取车辆的平均等待时间作为奖励函数,输出相位的持续时间作为动作。求解Q值时,为了解决过度估计问题,采用双竞争深度Q网络算法。实验结果表明,该强化学习方法控制性能优于Sumo自带的定时控制方法。(4)在上述算法的基础上,设计与实现了一个交通信号灯控制仿真系统。该系统包括用户管理、交通元素管理、交通信号灯控制方案仿真、任务管理等功能模块,能够根据单交叉口的车流数据自动决策信号灯的相位周期,为交通管理人员提供易于操作的交通仿真工具。