基于模糊逻辑和强化学习的交通信号优化方法设计与实现

来源 :北京邮电大学 | 被引量 : 0次 | 上传用户:cnjhhzy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,我国社会经济高速发展,城市规模逐渐扩大,伴随而来的是城市中的机动车数量的快速增加,由此造成道路拥堵、交通事故频发、汽车尾气排放污染环境等一系列问题。解决这些问题的关键途径是提升路网的通行能力,通过减少车辆在交叉口的延误时间来提高城市路网的通行效率。在以上背景下,本文设计并实现了三种城市单交叉口的交通信号控制方法,并通过二次开发Sumo仿真软件进行对比分析。(1)设计与实现一种交通灯信号的模糊控制方法。该方法基于四相位定相序对单交叉口交通灯进行控制,采用两层模糊控制系统,第一层模糊控制系统输入为车辆排队数和车辆到达率,输出为当前相位和下一相位交通流强度。第二层模糊控制系统以两个相位的交通流强度作为输入,输出为当前绿灯相位的绿灯延长时间。实验结果表明该方法的控制性能优于Sumo仿真软件自带的定时控制方法与传统模糊控制方法。(2)利用遗传算法来优化模糊控制系统。将模糊规则和隶属度函数参数编码为染色体,以车辆平均等待时间等评价指标构建适应度函数。种群迭代过程中,将个体解码为模糊控制系统的规则和隶属度函数参数,然后利用仿真软件对个体代表的控制系统进行仿真,得到个体评价函数值。在选择过程中加入了精英保留策略来保证最优个体不被破坏。经过遗传算法优化后,模糊控制系统控制交通信号灯的性能得到明显提升。(3)利用强化学习方法解决单交叉口交通信号灯控制问题。该方法充分利用路网传递的交通流参数,将路网截取为位置、速度矩阵,并将其作为输入状态。采取车辆的平均等待时间作为奖励函数,输出相位的持续时间作为动作。求解Q值时,为了解决过度估计问题,采用双竞争深度Q网络算法。实验结果表明,该强化学习方法控制性能优于Sumo自带的定时控制方法。(4)在上述算法的基础上,设计与实现了一个交通信号灯控制仿真系统。该系统包括用户管理、交通元素管理、交通信号灯控制方案仿真、任务管理等功能模块,能够根据单交叉口的车流数据自动决策信号灯的相位周期,为交通管理人员提供易于操作的交通仿真工具。
其他文献
随着互联网的迅猛发展,图像多元化处理的需求越来越大,而图像风格转换也逐渐成为当下人们关注的一个研究热点,具有广泛的研究意义与应用价值。近年来,传统的基于深度卷积神经网络的图像风格转换技术遇到了巨大的挑战。而生成对抗网络的提出为图像风格转换问题的解决提供了一种全新的思路,并且生成对抗网络在生成图像分辨率、样本的真实性等方面都取得了更好的效果。因此,基于生成对抗网络的图像风格转换已成为当下的一个研究热