论文部分内容阅读
在全球能源危机的大背景下,如何提高能源利用率,合理配置和利用资源已经成为各个国家一个不得不面对的问题。我国是合成氨生产大国,每年几千万吨的合成氨产量使得我国氨合成工业中蕴含着巨大的节能潜力。本文以某目标企业年产24万吨合成氨项目为背景,针对原有生产流程做了一系列改进。与改进前方案相比,改进方案新增了级间换热器用于取热,用所得热量驱动溴化锂吸收式制冷机,溴化锂吸收式制冷机所制得的冰水用于冷却新增的一入换热器,以达到降低入口合成气温度的作用。本文还使用Aspen Plus软件对整个改进后的方案进行了数值模拟研究,所得到的模型不但可以用于本文中所述的年产24万吨合成氨工艺,还可以用于其他产量的合成氨生产工艺模拟,为企业日后的升级改造流程提供了依据。本文主要研究工作包含以下几个方面:1.提出了新的流程改进方案:在每级压缩机级间加装一个换热器(共计9个级间换热器),用冷却合成气以后所得到的95℃脱盐水驱动新增加的溴化锂吸收式制冷机,用所制得的8℃的冰水冷却压缩机初级入口气体。2.使用Aspen Plus软件对改进前后的方案进行了数值模拟分析,通过分析计算得到改进后流程可利用的余热总量,以及流程中各个模块的具体参数。3.完成了溴化锂吸收式制冷机的数值模拟,并根据模拟结果结合三洋溴化锂制冷机设备一览表选用了三洋LCC-61D型低温水大温差型溴化锂吸收式制冷机,以达到将余热全部利用的目的。4.针对新流程完成压缩机初级气体入口处换热器的设计,得到了切实可行的设计结果。5.确定了改进后方案的工作范围,最佳工况等参数。6.对新流程进行能效分析和经济性分析,从冷却水节约量、生产效率提升收益、新设备投资和维护成本几个方面进行综合分析。与原有流程相比新流程节水约80kg/s,吨氨降耗115k Wh,得出新流程的投资回收周期约为7.5个月。