论文部分内容阅读
无线通信技术的快速发展极大提高了人们的工作效率和生活质量,也为信息社会的不断发展提供巨大的动力。在众多无线通信技术中,空分复用技术得到了极大的关注与发展,因为它能够不占用额外频谱资源而成倍地提高系统的信息传输速率。作为空分复用的一种特殊形式,基于携带轨道角动量(OAM)的涡旋电磁波通信提供了 一个螺旋维度,从而大大提高了通信系统的频谱利用效率,正逐渐成为了电磁领域和通信领域的一个研究热点。本文就射频涡旋电磁波通信做了如下三方面的工作:第一,为解决射频涡旋模式复用的难题,仿真设计了一种基于堆叠环形行波缝隙谐振腔的四OAM模式复用天线,天线的工作频率为10GHz。之后完成了对该天线的加工,并实验测量了天线的性能;第二,利用一对已加工的天线,搭建了基于四OAM模式天线的模分复用(MDM)射频无线通信系统,实现了接近Gbit/s的无线传输容量,通信距离为10米。实验证明了射频电磁涡旋通信较传统多入多出(MIMO)技术能够不牺牲通信容量而大大降低了系统的接收复杂度;第三,为了解决传统整圆接收方法随着传输距离增加而带来的接收天线口径过大的问题,提出了一种基于优化的OAM模式选择的紧凑接收方案,即部分弧度采样接收(PASR),之后通过理论,仿真和实验论证了该方法的可行性。本文对射频涡旋电磁通信系统的发射端,无线链路,以及接收端都进行了细致的理论与实验研究,分析了电磁涡旋通信存在的问题并提出了一些可行的解决方案,促进了射频电磁涡旋无线通信的发展。最后,对射频涡旋电磁通信的未来进行了展望。